Gregor Mendel (1822-1884) Responsible for the Laws governing Inheritance of Traits.

Slides:



Advertisements
Similar presentations
copyright cmassengale
Advertisements

1 Mendelelian Genetics 2 Gregor Mendel ( ) Responsible for the Laws governing Inheritance of Traits.
1 Introduction to Genetics All-Star Science 2 Gregor Mendel ( ) Responsible for the Laws governing Inheritance of Traits Genetics Father of Genetics.
1 Mendelelian Genetics 2 Gregor Mendel ( ) Austrian monkAustrian monk Studied the inheritance of traits in pea plantsStudied the inheritance.
1 Mendelelian Genetics copyright cmassengale Question: How Are Traits Passed From Parents To Offspring?
1 Mendelelian Genetics 2 Gregor Mendel ( ) Responsible for the Laws governing Inheritance of Traits.
copyright cmassengale
1 Mendelelian Genetics copyright cmassengale 2 Gregor Mendel ( ) Responsible for the Laws governing Inheritance of Traits copyright cmassengale.
MENDELIAN GENETICS 1. GREGOR JOHANN MENDEL  Austrian monk  Studied the inheritance of traits in pea plants  Developed the laws of inheritance  Mendel's.
1 Mendelelian Genetics 2 Gregor Mendel ( ) Responsible for the Laws governing Inheritance of Traits.
Basic Genetics *. View video at:
Mendelian Genetics. Gregor Mendel ( ) Responsible for the laws governing Inheritance of Traits.
1 Mendelelian Genetics copyright cmassengale. 2 Gregor Mendel ( ) Responsible for the Laws governing Inheritance of Traits.
1 Mendelelian Genetics 2 Gregor Mendel ( ) Responsible for the Laws governing Inheritance of Traits.
1 Intro to Mendelelian Genetics 2 Gregor Mendel ( ) Responsible for the Laws governing Inheritance of Traits.
1 Mendelelian Genetics copyright cmassengale. 2 Gregor Mendel ( ) Responsible for the Laws governing Inheritance of Traits copyright cmassengale.
1 Mendelelian Genetics copyright cmassengale 2 Gregor Mendel ( ) Responsible for the Laws governing Inheritance of Traits copyright cmassengale.
MENDELIAN GENETICS HS Biology Standard - Comprehend Mendel’s laws of genetics and how these laws affect variability within species [law of independent.
1 Gregor Mendel ( ) Responsible for discovering the laws governing inheritance of traits.
1 Mendelelian Genetics copyright cmassengale 2 Gregor Mendel ( ) Responsible for the Laws governing Inheritance of Traits copyright cmassengale.
Mendelian Genetics Gregor Mendel Introduction Genetics is the study of heredityGenetics is the study of heredity Gregor Mendel used mathematics to study.
1 Mendel and Heredity 2 Gregor Mendel ( ) Responsible for the Laws governing Inheritance of Traits.
Genetics Ms. Tetrev.
Non-Mendelian Problems
Genetic Crosses Shows possible outcomes of genes the new generation will have We use: Punnett Squares Visit
1 Mendelian Genetics 2 Gregor Mendel ( ) Responsible for the Laws governing Inheritance of Traits.
1 Mendelian Genetics copyright cmassengale 2 Genetic Terminology  Trait - any characteristic that can be passed from parent to offspring  Heredity.
1 Mendelelian Genetics. 2 Gregor Mendel ( ) Responsible for the Laws governing Inheritance of Traits.
MENDEL’S LAWS copyright cmassengale 1. RESULTS OF MONOHYBRID CROSSES  Inheritable factors or genes are responsible for all heritable characteristics.
1 Intro to Mendelelian Genetics 2 Gregor Mendel ( ) Responsible for the Laws governing Inheritance of Traits.
1 Mendelelian Genetics copyright cmassengale 2 Gregor Mendel ( ) Responsible for the Laws governing Inheritance of Traits copyright cmassengale.
Intro to Mendelelian Genetics
MENDELIAN GENETICS. Gregor Johann Mendel ( ) Austrian Monk Studied the inheritance of traits in pea plants Developed the laws of inheritance.
1 Mendelian Genetics copyright cmassengale 2 Gregor Mendel ( ) Responsible for the Laws governing Inheritance of Traits copyright cmassengale.
TODAY (11/29) Turn in your Mutated Monsters Worksheet
Mendelian Genetics Gregor Mendel ( ) Responsible for the Laws governing Inheritance of Traits.
1 Mendelelian Genetics copyright cmassengale 2 Gregor Mendel ( ) Responsible for the Laws governing Inheritance of Traits copyright cmassengale.
1 Mendelelian Genetics copyright cmassengale 2 Gregor Mendel ( ) Responsible for the Laws governing Inheritance of Traits copyright cmassengale.
1 Mendel’s Laws. 2 Law of Dominance In a cross of parents that are pure for contrasting traits, only one form of the trait will appear in the next generation.
1 Mendelelian Genetics 2 Gregor Mendel ( ) Responsible for the Laws governing Inheritance of Traits.
1 Theoretical Genetics copyright cmassengale 2 Gregor Mendel ( ) Responsible for discovering the Inheritance of Traits copyright cmassengale.
Quick Review Mitosis, Karyotypes and Meiosis 1. Meiosis KM2 Karyotyping.
1 Mendelelian Genetics copyright cmassengale Bellringer Define: -Dominant -Recessive -Genotype -Phenotype -Carrier -Allele If B is the allele for Brown.
1 Intro to Mendelelian Genetics 2 Gregor Mendel ( ) Responsible for the Laws governing Inheritance of Traits.
Mendelelian Genetics copyright cmassengale1 2 Gregor Mendel ( ) Responsible for the Laws governing Inheritance of Traits.
1 Mendelelian Genetics copyright cmassengale 2 Gregor Mendel ( ) Responsible for the Laws governing Inheritance of Traits Called the “Father.
Intro to Mendelelian Genetics
copyright cmassengale
copyright cmassengale
copyright cmassengale
copyright cmassengale
Mendelian Genetics 6/14/2018 Genetics.
copyright cmassengale
copyright cmassengale
copyright cmassengale
Mendelian Genetics 7/30/2018 Mendel’s Laws.
copyright cmassengale
Mendelian Genetics 11/7/2018 Mendelelian Genetics.
EQ: How is the work of Gregor Mendel pertinent in genetics today?
Intro to Mendelelian Genetics
copyright cmassengale
Mendelian Genetics 12/2/2018 Mendelelian Genetics.
Punnett Squares.
Mendelian Genetics 12/6/2018 Mendel’s Laws.
Mendelian Genetics 1/1/2019 Mendelian Genetics.
copyright cmassengale
Mendelian Genetics 2/24/2019 Mendelelian Genetics.
Mendelelian Genetics (pgs )
Presentation transcript:

Gregor Mendel ( ) Responsible for the Laws governing Inheritance of Traits

Gregor Johann Mendel  Austrian monk  Studied the inheritance of traits in pea plants  Developed the laws of inheritance  Mendel's work was not recognized until the turn of the 20th century Called Father of Genetics

Genetic Terminology  Trait - any characteristic that can be passed from parent to offspring  Heredity - passing of traits from parent to offspring  Genetics - study of heredity

Types of Genetic Crosses  Monohybrid cross - cross involving a single trait e.g. flower color  Dihybrid cross - cross involving two traits e.g. flower color & plant height

Punnett Square  Used to help solve genetics problems

Punnett Square Alleles used to represent traits being crossed. P=purple p=white

Designer “Genes”  Alleles - two forms of a gene (dominant & recessive)  Dominant - stronger of two genes expressed in the hybrid; represented by a capital letter (R)  Recessive - gene that shows up less often in a cross; represented by a lowercase letter (r)

More Terminology  Genotype - gene combination for a trait (e.g. RR, Rr, rr)  Phenotype - the physical feature resulting from a genotype (e.g. red, white)

Genotype & Phenotype in Flowers Genotype of alleles: R = red flower r = yellow flower All genes occur in pairs, so 2 alleles affect a characteristic Possible combinations are: GenotypesRR Rrrr PhenotypesRED RED YELLOW

Genotypes  Homozygous genotype - gene combination involving 2 dominant or 2 recessive genes (e.g. RR or rr); also called pure  Homozygous genotype - gene combination involving 2 dominant or 2 recessive genes (e.g. RR or rr); also called pure  Heterozygous genotype - gene combination of one dominant & one recessive allele (e.g. Rr); also called hybrid

Law of Segregation During the formation of gametes (eggs or sperm), the two alleles responsible for a trait separate from each other.During the formation of gametes (eggs or sperm), the two alleles responsible for a trait separate from each other. Alleles for a trait are then "recombined" at fertilization, producing the genotype for the traits of the offspringAlleles for a trait are then "recombined" at fertilization, producing the genotype for the traits of the offspring.

Applying the Law of Segregation

Law of Independent Assortment Alleles for different traits are distributed to sex cells (& offspring) independently of one another.Alleles for different traits are distributed to sex cells (& offspring) independently of one another. This law can be illustrated using dihybrid crosses.This law can be illustrated using dihybrid crosses.

Dihybrid Cross A breeding experiment that tracks the inheritance of two traits.A breeding experiment that tracks the inheritance of two traits. Mendel’s “Law of Independent Assortment”Mendel’s “Law of Independent Assortment” a. Each pair of alleles segregates independently during gamete formationa. Each pair of alleles segregates independently during gamete formation b. Formula: 2 n (n = # of heterozygotes)b. Formula: 2 n (n = # of heterozygotes)

Dihybrid Cross Traits: Seed shape & Seed colorTraits: Seed shape & Seed color Alleles:Alleles: R round r wrinkled Y yellow y green RrYy x RrYy RY Ry rY ry All possible gamete combinations

Dihybrid Cross RYRyrYry RYRy rY ry

RRYY RRYy RrYY RrYy RRYy RRyy RrYy Rryy RrYY RrYy rrYY rrYy RrYy Rryy rrYy rryy Round/Yellow: 9 Round/green: 3 wrinkled/Yellow: 3 wrinkled/green: 1 9:3:3:1 phenotypic ratio RYRyrYryRY Ry rY ry

Dihybrid Cross Round/Yellow: 9 Round/green: 3 wrinkled/Yellow: 3 wrinkled/green: 1 9:3:3:1

Summary of Mendel’s laws LAW PARENT CROSS OFFSPRING DOMINANCE TT x tt tall x short 100% Tt tall SEGREGATION Tt x Tt tall x tall 75% tall 25% short INDEPENDENT ASSORTMENT RrGg x RrGg round & green x round & green 9/16 round seeds & green pods 3/16 round seeds & yellow pods 3/16 wrinkled seeds & green pods 1/16 wrinkled seeds & yellow pods

Incomplete Dominance F1 hybrids in betweenphenotypesF1 hybrids have an appearance somewhat in between the phenotypes of the two parental varieties. Example:snapdragons (flower)Example: snapdragons (flower) red (RR) x white (rr) RR = red flowerRR = red flower rr = white flower R R rr

Incomplete Dominance RrRrRrRr R Rr All Rr = pink (heterozygous pink) produces the F 1 generation r

Incomplete Dominance

Codominance Two alleles are expressed (multiple alleles) in heterozygous individuals.Two alleles are expressed (multiple alleles) in heterozygous individuals. Example: blood typeExample: blood type 1.type A= I A I A or I A i1.type A= I A I A or I A i 2.type B= I B I B or I B i2.type B= I B I B or I B i 3.type AB= I A I B3.type AB= I A I B 4.type O= ii4.type O= ii

Codominance Problem Example: homozygous male Type B (I B I B ) x heterozygous female Type A (I A i) IAIBIAIB IBiIBi IAIBIAIB IBiIBi 1/2 = I A I B 1/2 = I B i IBIB IAIA i IBIB