Equation of State and Symmetry Energy in Heavy-Ion Collisions Supernovae, neutron stars Astrophysics Heavy-ion collisions: dynamics/fragmentation GDR &

Slides:



Advertisements
Similar presentations
PROBING THE DENSITY DEPENDENCE OF SYMMETRY ENERGY WITH HIC KITPC Workshop, Beijing, June09, “Recent Progress and New Challenges in Isospin.
Advertisements

ASY-EOS Past and future: PR Milano, 28/04/14. Fuchs and Wolter, EPJA 30 (2006) EOS of symmetric nuclear and neutron matter from Ab initio calculations.
Probes of EOS in Heavy Ion Collisions : results from transport theories Maria Colonna INFN - Laboratori Nazionali del Sud (Catania) Nuclear Structure &
Exochim & Farcos collaboration: L. Acosta, F. Amorini, A. Anzalone, L. Auditore, G. Cardella, A. Chbihi, E. De Filippo, L. Francalanza, E. Geraci, C. Guazzoni,
Neutron Number N Proton Number Z a sym =30-42 MeV for infinite NM Inclusion of surface terms in symmetry.
The National Superconducting Cyclotron Laboratory Michigan State University Betty Tsang 5th ANL/MSU/JINA/I NT FRIB Workshop on Bulk Nuclear Properties.
The National Superconducting Cyclotron State University Betty Tsang Constraining neutron star matter with laboratory experiments 2005.
16/1/06Eurisol ECT*1 The nuclear liquid gas phase transition Francesca Gulminelli LPC Caen and Institut Universitaire de France The status of.
Overview of the experimental constraints on symmetry energy Betty Tsang, NSCL/MSU.
Germany's United States 2 Germany 0 FIFA Women’s World Cup Semifinal.
E432a: Decay of Highly Excited Projectile-like Fragments Formed in dissipative peripheral collisions at intermediate energies 1.Understanding thermodynamic.
Zbigniew Chajęcki National Superconducting Cyclotron Laboratory Michigan State University Probing reaction dynamics with two-particle correlations.
Two- and multi-particle correlation studies Correlations as probes for spectroscopy and dynamics [dynamics]  [spectroscopy] Nuclear equation of state;
Constraining the EoS and Symmetry Energy from HI collisions Statement of the problem Demonstration: symmetric matter EOS Laboratory constraints on the.
ASY-EOS experiment P. Russotto* for the ASY-EOS collaboration *LNS-INFN and Univ. of Catania, Italy /06/11.
Pornrad Srisawad Department of Physics, Naresuan University, Thailand Yu-Ming Zheng China Institute of Atomic Energy, Beijing China Azimuthal distributions.
Reaction mechanisms in transport theories: a test of the nuclear effective interaction Maria Colonna INFN - Laboratori Nazionali del Sud (Catania) NN2012.
Mauro BrunoBologna UniversityINFN-Bologna (Italy) H.Jaqaman et al. PRC27(1983)2782 Thermodynamical aspects in heavy ion reactions.
Fragmentation mechanism and enhanced mid-rapidity emission for neutron-rich LCPs Yingxun Zhang( 张英逊 ) 中国原子能科学研究院 Colloborator: Chengshuang Zhou 周承双 (CIAE,GXNU),
Maria Colonna Laboratori Nazionali del Sud (Catania) Extracting the symmetry energy from low Extracting the symmetry energy from low and medium energy.
The FARCOS project Collaboration: INFN (CT, LNS, MI, NA; Italy), GANIL (France), Un. Huelva (Spain) Synergies: Fazia, Neutron detectors, Spectrometers,
Tensor force induced short-range correlation and high density behavior of nuclear symmetry energy Chang Xu ( 许 昌 ) Department of Physics, Nanjing Univerisity.
Shanghai Elliptic flow in intermediate energy HIC and n-n effective interaction and in-medium cross sections Zhuxia Li China Institute of Atomic.
Probing two-particle sources in HIC Giuseppe Verde, NSCL/Michigan State University HIC03, Montreal, June, R(E * ) E * (MeV) p-p d-   - 6.
Summary of EOS working group Z. Chajecki,B. Tsang Additional contributions from: Garg, Brown, Pagano Neutron stars HICs, Structure Neutron skin Tan Ahn.
Probing the density dependence of symmetry energy at subsaturation density with HICs Yingxun Zhang ( 张英逊 ) China Institute of Atomic Energy JINA/NSCL,
Maria Colonna Laboratori Nazionali del Sud (Catania) Testing the behavior of n-rich systems away from normal density Eurorib’ 10 June 6-11, Lamoura.
Probing the nuclear EOS with fragment production Maria Colonna Laboratori Nazionali del Sud (Catania)
Maria Colonna Laboratori Nazionali del Sud (Catania) Dynamics and Thermodynamics with.
Ln(R 12 ) N Alan McIntosh, Yennello Research Group, TAMU-CI. Nuclear Physics Town Meeting, Aug 2014, College Station, TX Asymmetry Dependence of Thermodynamic.
Probing the isospin dependence of nucleon effective mass with heavy-ion reactions Momentum dependence of mean field/ –Origins and expectations for the.
Pygmy Dipole Resonance in 64Fe
BNU The study of dynamical effects of isospin on reactions of p Sn Li Ou and Zhuxia Li (China Institute of Atomic Energy, Beijing )
Equation of state of asymmetricic nuclear matter at supra- saturation densities CBM collaboration meeting April 15, 2010, Darmstadt, Germany Laboratory.
Measuring flow to constrain the symmetry energy of the nuclear equation of state Zoe Matthews for Liverpool University and the ASYEOS Collaboration QUATION.
M.Di Toro, ECT*/Eurisol Jan.06, Isospin Dynamics in Heavy Ion Collisions at Fermi Energies: EOS-sensitive Observables Dissipative Collisions.
Neutron enrichment of the neck-originated intermediate mass fragments in predictions of the QMD model I. Skwira-Chalot, T. Cap, K. Siwek-Wilczyńska, J.
Constraints on the Symmetry Energy from Heavy Ion Collisions Hermann Wolter Ludwig-Maximilians-Universität München 44th Karpacz Winter School of Theoretical.
Probing the symmetry energy with isospin ratio from nucleons to fragments Yingxun Zhang( 张英逊 ) China Institute of Atomic Energy The 11 th International.
Charge Equilibration Dynamics: The Dynamical Dipole Competition of Dissipative Reaction Mechanisms Neck Fragmentation M.Di Toro, PI32 Collab.Meeting, Pisa.
Unified description of nuclear stopping in central heavy-ion collisions from 10A MeV to 1.2A GeV Yu-Gang Ma Shanghai INstitute of Applied Physics, Chinese.
Observables for the High-Density Symmetry Energy from Heavy Ion Collisions Observables for the High-Density Symmetry Energy from Heavy Ion Collisions HIM-Meeting,
Femtoscopy and dynamics/ intermediate energies Imaging “Femtoscopy” Transport models / Asy-EOS Complex particle correlations Our future R~1-10fm  ~10.
Three-body force effect on the properties of asymmetric nuclear matter Wei Zuo Institute of Modern Physics, Lanzhou, China.
Nuclear Isovector Equation-of-State (EOS) and Astrophysics Hermann Wolter Dep. f. Physik, LMU Topics: 1.Phase diagram of strongly interacting matter and.
Isovector reorientation of deuteron in the field of heavy target nuclei The 9th Japan-China Joint Nuclear Physics Symposium (JCNP 2015) Osaka, Japan, Nov.
Z.Q. Feng( 冯兆庆 ), W.F. Li( 李文飞 ), Z.Y. Ming( 明照宇 ), L.W. Chen( 陈列文 ), F. S. Zhang ( 张丰收 ) Institute of Low Energy Nuclear Physics Beijing Normal University.
Properties of clustered nuclear matter in nuclear reactions Maria Colonna INFN - Laboratori Nazionali del Sud (Catania) NUFRA October 2015 Kemer.
Compact Stars in the QCD Phase Diagram IV, Prerow, Germany, Sept , 2014 The Symmetry Energy at Supersaturation Densities from Heavy Ion Collisions.
COLLECTIVE FEATURES OF NUCLEAR DYNAMICS WITH EXOTIC NUCLEI WITHIN MICROSCOPIC TRANSPORT MODELS Virgil Baran University of Bucharest ROMANIA.
Cluster emission and Symmetry Energy Constraints with HIC observables Yingxun Zhang ( 张英逊 ) 2015 年 12 月 15 日, Shanghai China Institute of Atomic Energy.
Tetsuya MURAKAMI For SAMURAI-TPC Collaboration Physics Using SAMURAI TPC.
Current status and future direction on symmetry energy determination using Heavy Ion Collisions How does this subfield intersect with other subfields?
Experimental determination of the symmetry energy W. Trautmann, GSI Helmholtzzentrum, Darmstadt, Germany Nuclear Equation of State for Compact Stars and.
Constraints on E sym (  )-L from RIB induced reactions…and more Zach Kohley NSCL/MSU NuSYM14 July 7, 2014.
W. Trautmann GSI Helmholtzzentrum, Darmstadt, Germany Symposium on applied nuclear physics and innovative technologies Kraków, June 5, 2013.
Electric Dipole Response, Neutron Skin, and Symmetry Energy
Fragment-fragment correlations
Correlations and space-time probes in Heavy-Ion collisions
FAST IN-MEDIUM FRAGMENTATION OF PROJECTILE NUCLEI
Shalom Shlomo Cyclotron Institute Texas A&M University
Transverse and elliptic flows and stopping
Reaction dynamics – Intermediate energies
124Sn + 64Ni (35AMeV) b- impact parameter
Isospin observables Observables
Workshop on Nuclear Structure and Astrophysical Applications
Reaction Dynamics in Near-Fermi-Energy Heavy Ion Collisions
International Workshop on Nuclear Dynamics and Thermodynamics
Zhao-Qing Feng (冯兆庆) Institute of Modern Physics (IMP), CAS
in 124Sn,107Sn + 120Sn collisions at 600 MeV/nucleon
Presentation transcript:

Equation of State and Symmetry Energy in Heavy-Ion Collisions Supernovae, neutron stars Astrophysics Heavy-ion collisions: dynamics/fragmentation GDR & PYGMY RESONANCE halos Skins Nuclei structure & collective modes G. Verde INFN, Sez. Catania

The nuclear Equation of State Exploring the EoS: “How much energy is needed to compress hadronic matter?” Why heavy-ion collisions? – this talk: Intermediate (Fermi) energies (E/A=20-70 MeV) & sub-relativistic energies (E/A= MeV) – Densities ≈ 0.01ρ 0 – 2.5ρ 0, Temperatures < 15 MeV What is the role of isospin asymmetry δ=(N-Z)/(N+Z) in nuclear reactions?

T=T C P=P C Nuclear Equation of State Nuclear interaction ≈ van der Waals P vs ρT vs ρ Compressibility Pressure H.R. Jaqaman et al., PRC 29, 2067 (1984) G. Sauer et al., NPA 264, 221 (1976) Spinodal instability region (K<0): Liquid-gas phase transitions at ρ<ρ 0 and T<15 MeV ? Gas-like: free nucleons and light clusters Liquid-drop-like: heavier fragments; density fluctuations… vapor condensation?... Borderie, Rivet, Prog.Part.Nucl.Phys. 61 (2008) Symmetric nuclear matter

Pure Neutron matter F. De Jong, H. Lenske, PRC57, 3099 (1998) T=T C P=P C Asy-EoS: asymmetric nuclear matter P vs ρT vs ρ Borderie, Rivet, Prog.Part.Nucl.Phys. 61 (2008) δ δ Gas-like: free nucleons and light clusters Neutron rich (N>>Z) Liquid-drop-like: heavier fragments from growth of density fluctuations… Isospin symmetric (N≈Z) Isospin effects in the liquid-gas coexistence region: fractionation Mueller & Serot, PRC52, 2072 (1995) Asymmetric nuclear matter H. Xu et al., PRL75, 716 (2000)

Where and how to explore EoS ? 1.Astrophysical sites: supernovae, neutron stars… 2.Excited nuclear systems produced in heavy-ion collisions (HIC) HIC very different systems…

HIC compressing and heating nuclear matter Projectile Target Pre-equilibrium, stopping, compression Flow, expansion Fragmentation Secondary decays Laboratory controlled Beam energy, target and projectile (A,Z) −compression and excitation: supra-saturation densities (ρ/ρ 0 >1), T>0 MeV −stopping and collective expansion: sub-saturation densities (ρ/ρ 0 <1), fragmentation, phase transitions Proj and target N/Z asymmetry (ex.: 124 Sn+ 124 Sn vs 112 Sn+ 112 Sn) −enhancement of isotopic N/Z effects (increasing as (N-Z) 2 /A)  Asy-EoS Au+Au Excited systems live for a very short time ( s s): need reconstruction of all reaction  4π detectors and resolution time (fm/c) ρ/ρ 0 time (fm/c) Temperature EoS under laboratory controlled conditions QMD

4π and high resolution detectors LNS TAMU GSI GANIL, GSI LNL Lassa + MSU MSU,LNL,LNS LNL, LNS, GANIL

Exciting nuclear matter with HIC The path to multifragmentation Decay of Quasi-Fused central source Collective motion important Decay of Quasi-Projectile (Projectile spectators) at forward angles Size decreases with excitation Central : excitation depends on beam energy Peripheral: impact parameter linked to excitation Borderie, Rivet, Prog. Part. Nucl. Phys. 61 (2008) 551 and Refs. Therein; WCI Book, Eur. Phys. J. A30 (2006) Increasing excitation to induce signature of LG phase transition? J. Pochodzalla, PRL75, 1040 (1995) Excitation energy (MeV/u) Temperature (MeV) Caloric Curves

Multifragmentation like vapor condensation? Xe+SnE/A=25-50 MeV Central GANIL ln(σ 2 ) ln( ) Δ-scaling Δ=1 Δ=1/2 P(Z max ) = η f Gauss (Z max ) + (1-η) f Gumbel (Z max ) D. Gruyer et al., PRL 110, (2013) Z max = Order parameter of the phase transition Distribtuion and Fluctuations Z max distributions vs E beam Analogy with Out-of equilibrium cluster aggregation models E/A~ 32 MeV  Transition towards “explosive fragmentation” over shorter time-scales due to stopping and radial flow

EoS of asymmetric nuclear matter Symmetric matter Elliptic flow: high density EoS 22 t = fm/c In-plane directed flow P. Danielewicz, R. Lacey, W.G. Lynch, Science, 298, 1592 (2002) Constraints from directed flow Central Au+Au

EoS of asymmetric nuclear matter Asymmetry term Brown, Phys. Rev. Lett. 85, 5296 (2001) Many approaches… large uncertainties…. Microscopic many-body, phenomenological, variational, … Especially at high densities (three-body forces) ZH Li, U. Lombardo, PRC (2006) Fuchs and Wolter, EPJA 30, 5 (2006) B.A. Li et al., Phys. Rep. 464, 113 (2008) E sym (MeV) Stiff Soft Esym enhanced in reactions with large N/Z asymmetries (due to δ 2 )

Parameterizations of density dependence slope strength curvature Microscopic transport models: -input AsyEoS parameterizations -compare predictions to observables measured in Heavy-Ion collisions High γ, L Low γ, L UrQMD by Q. Li

E sym studies with Pygmy Dipole Resonance L=65.1±15.5 MeV S o =32.3±1.3 MeV Klimkiewicz et al., PRC 76, (R) (2007) Wieland et al., PRL102, (2009) Carbone et al., PRC 81, (2010) Collective oscillation of neutron skin against the Core  Esym around saturation density M.B. Tsang, NN2012 dR np ( 208 Pb)= 0.20±0.02 fm

E sym and neutron stars S. Gandolfi et al., Physical Review C85, (R) Symmetry energy Neutron star Radii and Masses Neutron Stars Radii Frequencies of crustal vibrations Composition, thickness of inner crust URCA processes Phases within the star Monte Carlo (QMC) methods

HIC at Fermi energies: E/A<80 MeV b=peripheral PLF TLF Isospin diffusion & drift Pre-equilibrium emission Flow Multifragmentation b=central b=mid-peripheral Neck fragments PLF TLF Isospin diffusion & drift

Neutron-proton ratios at pre-equilibrium Asy-Soft more repulsive for neutrons Y(n)/Y(p) in 124Sn+124Sn Y(n)/Y(p) in 112Sn+112Sn Double ratios: enhance N/Z effects & reduce systematic errors and efficiency problems V. Baran et al., Phys. Rep. 410 (2005) B.A. Li et al., PLB 634, 378 (2006) Y. Zhang et al., PLB664, 145 (2008) 112 Sn+ 112 Sn, 124 Sn+ 124 Sn E/A=50 MeV Famiano et al., PRL97, (2006) Skyrme-like mean field M.B. Tsang et al., PRL102, (2009) ImQMD simulations Vs Data γ≈

HIC at Fermi energies: E/A<100 MeV b=peripheral PLF TLF Isospin diffusion & drift Pre-equilibrium emission Flow Multifragmentation b=central b=mid-peripheral Neck fragments PLF TLF Isospin diffusion & drift

Isospin diffusion TLFPLFNeck      n/p diffusion Isospin drift & diffusion ρ  ~1/8ρ 0 ρ~ρ 0 ρ  ~ρ 0 n drift Isospin drift TLFPLFNeck ρ/ρ   E sym vs ρ Asy-Stiff Asy-Soft Low ρ  ρ 0 Isospin equilibration Long τ int Isospin translucency Short τ int Proj Targ TLF PLF TLF PLF Colonna et al.; Danielewicz et al.

Exploring neck emissions V rel (IMF-PLF) / V Viola V rel (IMF-TLF) / V Viola Three-fragment correlations 124 Sn MeV/u LNS E. De Filippo et al., Phys. Rev. C (2012) PLF fission – long time-scales t>100 fm/c TLF fission – long time-scales t>100 fm/c Neck emission Fast time-scales t<100 fm/c

Isospin chronology and E sym (ρ) Data consistent with γ ≈ 0.8 Statistical Dynamical - Neck SMF SimulationsVsExperimental data SMF: Stochastic Mean Field calculations by M. Colonna et al. N/Z content of neck fragment (dynamical fast emission) N/Z content of statistical emission by PLF and TLF E. De Filippo et al., Phys. Rev. C (2012)

Isospin diffusion and imbalance ratios 112 Sn+ 112 Sn 112 Sn+ 124 Sn 124 Sn+ 112 Sn 124 Sn+ 124 Sn X=Observable sensitive to N/Z of emitter QP* QT* QP* QT* Isospin equilibration Isospin translucency QP* QT* 124 Sn 112 Sn Isospin transparency R i (X) = 0 0 < R i (X) < 1 R i (X) = 1 MIX PP NN GANIL MSU LNS Reconstructed (N/Z) of QP*  Indra: E. Galichet et al. PRC79, (2009) Mirror nuclei ratios: Y( 7 Li)/Y( 7 Be)  Lassa: M.B. Tsang et al., PRL102, (2009)  Chimera: Z.Y.Sun et al., PRC82, (2010)

Isospin diffusion probes of E sym (ρ) M.B. Tsang et al., PRL102, (2009) R i (X 7 ) Complete N/Z Mid rapidity N/Z Proj rapidity Z.Y. Sun et al., PRC (2010) γ = ,124 Sn+ 112,124 SnE/A=50 MeV MSU ImQMD Model Simulations

HIC at Fermi energies: E/A<100 MeV b=peripheral PLF TLF Isospin diffusion & drift Pre-equilibrium emission Flow Multifragmentation b=central b=mid-peripheral Neck fragments PLF TLF Isospin diffusion & drift

Directed flow and E sym (ρ) Z. Kohley et al., PRC82, (2010); PRC 85, (2012) 70 Zn+ 70 Zn, 64 Zn+ 64 Zn, 64 Ni+ 64 Ni - E/A= 35 MeV NIMROD+ISiS + TAMU TAMU Average flow balance ratio R flow = 1 Mass Dependence R flow = 0 Charge Dependence Sensitive to Esym(ρ): L. Scalone et al., PLB461, 9 (1999) Average Flow (MeV/c) Comparison to AMD+Gemini MASS CHARGE stiff soft Transition from Mass-dependent to Charge-dependent  sensitive to E sym (ρ)  predicted by different models (AMD, CoMD, SMF) Constrains on L~50-80 MeV by directed flow w different models

Symmetry Energy at subsaturation densities Present status from Heavy- ion collision measurements

Effects of the E sym at high density Beam energies E/A>100 MeV stiffness ≈(ρ/ρ 0 ) γ High ρ>ρ 0 : asy-stiff more repulsive on neutrons  Neutron-proton asymmetry at high density sensitive to E sym (ρ) stiffness B.A. Li et al., PRC71 (2005) ρ>ρ 0 Transport model: IBUU 132 Sn+ 124 Sn E/A = 400 MeV

n/p elliptic flow in HIC at GSI energies 22 t = fm/c φ Out-of-plane flow Squeeze-out Reaction plane x z y P.Russotto et al., Phys. Lett. B 697 (2011) 400 A MeV LAND-FOPI Data vs UrQMD 0.25<y/yp<0.75 b<7.5 fm pt dependence of n/p v 2 ratio  γ =0.9 ± 0.4 Qingfeng Li, J. Phys. G (2005)

Meson production and ratios at high ρ Low ρ  ρ 0 High ρ/ρ 0 K +,K 0  +,  - RBUU, Ferini et al., PRL97, PION ratios  + /  -  Perspectives from future SAMURAI-TPC Project (MSU, Riken) Strongly interacting in medium: high quality measurements required Present constraints on Esym are controversial (Zhigang Xiao et al. PRL 102 (2009); Zhao-Qing Feng, Gen-Ming Jin, Phys. Lett. B683 (2010), FOPI data) KAON ratios  + /  0 Weakly interacting in medium: good probes of high density Status: difficult measurements for low statistics (sub-threshold); see X, Lopez et al., PRC75, (2007), FOPI data)

Constraints on density dependence of symmetry energy Measurements of E sym (ρ), L and S 0 from different experimental approaches Heavy-ion collision dynamics 0.4 < γ < 1 Polarized protons elastic scattering on Pb isotopes:  dRnp = 0.21±0.06 fm) Polarized protons elastic scattering on Pb isotopes  dR np = 0.20±0.02 fm Finite Range Drop Model (FRDM) analysis of binding energies Astrophysical studies (X-ray data )

Summary and Perspectives EoS of symmetric nuclear matter largely explored in HIC (liquid-gas phase transitions, elliptic flow) Asymmetry EoS and symmetry energy need more explorations (sub- and supra-saturation) Sub-saturation densities: 0.4< γ <1.0: agreement from different methods (HIC, PDR, pp scattering, etc.) Perspectives: – E sym at very low densities (TAMU) – E sym at supra-saturation densities – Reinforce the study of transport model comparisons to experimental observables

Present & future projects Stable beams 400 AMeV 96 Zr AMeV 96 Ru AMeV Asy-Eos GSI Chimera+LAND+KRATTA+Microball n/p Elliptic flow SAMURAI Riken Stable and exotic beams 105 Sn+ 112 Sn, 132 Sn+ 124 Sn, 36 Ca+ 40 Ca, 52 Ca+ 48 Ca E/A= MeV Yield ratios: π + /π +, n/p, t/3He

64 Zn+ 92 Mo, 197 Au 40 Ar, 64 Zn+ 112,124 Sn E/A=35 MeV Symmetry energy at very low densities? Pre-equilibrium emission Flow Multifragmentation Central  ρ ≈ 0.01∙ρ 0 Clustering (~alphas) at small densities affects E sym C.J. Horowitz et al., NPA776, 55 (2006), G. Wanatabe et al., PRL103, (2009) E sym (ρ) not vanishing at very low ρ TAMU E sym (MeV) Density ρ(fm -3 ) Perspectives and challenge: access to Symmetry Energy at very low densities J.B. Natowitz et al, PRL 104 (2010) R. Wada et al., PRC85, (2012)

Acknoledgements The entire heavy-ion collisions community for the great work in the last ~30 years of explorations on EoS Special thanks: to GANIL, GSI, INFN, MSU