GSI Helmholtzzentrum für Schwerionenforschung GmbH Super-FRS multiplet field.

Slides:



Advertisements
Similar presentations
Q1 for JLAB’s 12 Gev/c Super High Momentum Spectrometer S.R. Lassiter, P.B. Brindza, M. J. Fowler, S.R. Milward, P. Penfold, R. Locke Q1 SHMS HMS Q2 Q3.
Advertisements

Hall C SHMS Fringe Field Analysis Michael Moore Hall C Winter Meeting
GSI Helmholtzzentrum für Schwerionenforschung GmbH Platforms and Infrastructure Collaboration meeting GSI-CERN
GSI Helmholtzzentrum für Schwerionenforschung GmbH Instrumentation Collaboration meeting GSI-CERN
Quadrupole Magnetic Design for an Electron Ion Collider Paul Brindza May 19, 2008.
IR Magnets for SuperKEKB KEK, Norihito Ohuchi 1.IR Magnets (ES, QCS, QC1) 2.Interference between Magnet-Cryostats and Belle 3.Summary SuperB.WS05.Hawaii.
1 Update on Focus Coil Design and Configuration M. A. Green, G. Barr, W. Lau, R. S. Senanayake, and S. Q. Yang University of Oxford Department of Physics.
Magnet designs for the ESRF-SR2
Superconducting Large Bore Sextupole for ILC
1 / 19 M. Gateau CERN – Geneva – CH 14th International Magnetic Measurement Workshop September 2005, Geneva, Switzerland.
BNG Industrial experience on Superconducting Undulators C. Boffo, T. Gehrard, B. Schraut, J. Steinmann, W. Walter, Babcock Noell GmbH T. Baumbach, S. Casalbuoni,
SuperFRS Multiplett and Dipole Vacuum Interfaces Multiplett: Insulation vacuum: Insulation Vacuum Pumping flanges: Two CF flanges of the size DN160 must.
Magnet designs for Super-FRS and CR
IHEP participation in SIS300 production UNILAC SIS 18 SIS 100/300 HESR Super FRS NESR CR RESR Institute for High Energy Physics Protvino, Russia FAIR meeting.
Hall C Meeting SHMS Magnets and Support Structure Design and Procurement Status Paul Brindza January 26, 2009.
GSI Helmholtzzentrum für Schwerionenforschung GmbH Status of Super-FRS Construction M. Winkler CERN-GSI Technical Coordination Meeting.
Focusing Lens for the SSR1 Section of PXIE Preliminary analysis of main options 3/13/2012I. Terechkine1.
Zian Zhu Magnet parameters Coil/Cryostat/Support design Magnetic field analysis Cryogenics Iron yoke structure Mechanical Integration Superconducting Magnet.
CEA DSM Irfu - F. KIRCHER - [Seoul Workshop, Feb 16-18, 2009] 1 ILD detector magnet: LoI version F. Kircher, O. Delferrière CEA Saclay, DSM/Irfu/SACM.
Status of GSI-FAIR Project magnets - open issues - G. Moritz GSI CARE HHH AMT November
Orbit Correctors in D2 and Q4 Update J. Rysti and E. Todesco 1 4/11/2014.
CLIC Workshop th -17 th October 2008 Thomas Zickler AT/MCS/MNC 1 CLIC Main Linac Quadrupoles Preliminary design of a quadrupole for the stabilization.
SHMS Spectrometer Update Hall C 2008 Users Meeting Paul Brindza January 18, 2008.
The Cosine Two Theta Quadrupole Magnets for the Jefferson Lab Super High Momentum Spectrometer (SHMS). P.B. Brindza, S.R. Lassiter M. J. Fowler Abstract—
Bending Magnets for the Metrology Light Source
Muon Cooling Channel Superconducting Magnet Systems Muon Collider Task Force Meeting on July 31, 2006 V.S. Kashikhin.
Consolidation of the Booster Injection Quadrupole Magnets (part 2) A. Aloev 14 th February 2013.
CLIC Stabilisation Day’08 18 th March 2008 Thomas Zickler AT/MCS/MNC/tz 1 CLIC Quadrupoles Th. Zickler CERN.
Correctors magnets V. Zubko, IHEP, Protvino SIS 300 Pre-consortium Meeting Thursday 19 March 2009, Protvino.
ILC Main Linac Superconducting Quadrupole V. Kashikhin for Superconducting Magnet Team.
CERN – GSI plenary coordination meeting, Magnetic Measurements WP.
Super Fragment Separator (Super-FRS) Machine and Magnets H. Leibrock, GSI Darmstadt Review on Cryogenics, February 27th, 2012, GSI Darmstadt.
1 Magnetic measurements of the Super-FRS magnets 1 Overview: - Measurement systems for dipoles - requirements - Measurement systems review - Open points.
CERN –GSI/CEA MM preparation meeting, Magnetic Measurements WP.
GSI Helmholtzzentrum für Schwerionenforschung GmbH The Optimized Superconducting Dipole of SIS100 for Series Production ICEC26 March 9th, 2016 GSI Helmholtzzentrum.
DDBA magnets Chris Bailey Low emittance rings Sept Frascati.
FNAL Workshop, July 19, 2007 ILC Main Linac Superconducting Quadrupole V.Kashikhin 1 ILC Main Linac Superconducting Quadrupole (ILC HGQ1) V. Kashikhin.
September 27, 2007 ILC Main Linac - KOF 1 ILC Main Linac Superconducting Quadrupole V. Kashikhin for Magnet group.
Yingshun Zhu Design of Small Aperture Quadrupole Magnet for HEPS-TF
GSI Helmholtzzentrum für Schwerionenforschung GmbH Super-FRS magnet configurations.
Review of Alignment Tolerances for LCLS-II SC Linac Arun Saini, N. Solyak Fermilab 27 th April 2016, LCLS-II Accelerator Physics Meeting.
HTS and LTS Magnet Design and Prototyping for RAON
GSI Helmholtzzentrum für Schwerionenforschung GmbH Dr. Hans Müller Primary Beams, Dept. SC Magnets and Testing (PB-MT) GSI Helmholtzzentrum für Schwerionenforschung.
The Super-FRS Multiplet, Magnetic and Cryogenic requirements
Yingshun Zhu Accelerator Center, Magnet Group
Safety aspects of superconducting magnets for Super-FRS
CBM magnet overview of the BINP work
High Gradient Magnet Design for SPring-8 Upgrade Plan
HO correctors update Massimo Sorbi and Marco Statera
Testing of SC Magnets Status - November 2010
6th BINP-FAIR-GSI Workshop,
Alexander Kalimov, State Polytechnic University, St.-Petersburg
(Procurement, testing of magnets)
EFREMOV INSTITUTE SAINT PETERSBURG RUSSIA
Conceptual Design of CEPC Interaction Region Superconducting Magnets
Yingshun Zhu Accelerator Center, Magnet Group
Compact and Low Consumption Magnet Design The DESY Experience
Beam dynamics of Super-FRS and MM requirements
SCU Next Phase Meeting July 8, 2014.
I. Bogdanov, S. Kozub, V. Pokrovsky, L. Shirshov,
FAIR magnets fiducialisation WP 7.5
MQYY: superconducting Quadrupole magnet for Hl-lhc
DESIGN OPTIONS FOR ORBIT CORRECTORS IN D2 and Q4
PERMANENT MAGNET QUADRUPOLE FOR THE LINAC 4 CCDTL
Updated concept of the CBM dipole magnet
FNAL Superconducting Quadrupole Test
Conceptual design of superconducting correctors for Hi-Lumi Project (v2) F. Toral - CIEMAT CIEMAT, March 7th, 2013.
J. García, F. Toral (CIEMAT) P. Fessia (CERN)
CEPC Final Focus Superconducting Quadrupole and Anti-solenoid Magnets
Feasibility of Recuperation of Magnets in Decommissioned Storage Rings
Presentation transcript:

GSI Helmholtzzentrum für Schwerionenforschung GmbH Super-FRS multiplet field

GSI Helmholtzzentrum für Schwerionenforschung GmbH Outline  Multiplets  Magnet Configurations in Multiplets  Requirements on axis and angles  Magnetic field simulations  Quadroples  Coupling Quadrupole-Sextupole  Conclusions

GSI Helmholtzzentrum für Schwerionenforschung GmbH General Design of SC Multiplet 25 long multiplets + 8 short multiplets Cold, laminated iron yoke (> 40 tons), Warm beam pipe (38 cm inner diameter) Common helium bath (~ 1300 liter helium) 1 pair of current leads per magnet max. current < 300 A for all magnets ~ 7 m long, > 60 tons 1 x long quadrupole (LQ) 2 x short quadrupole (SQ) equipped with octupole (O) coil 3 x sextupole (S) 1 x steering dipole (ST) (longest multiplet system) SQ+O LQ S S S ST short multiplet

GSI Helmholtzzentrum für Schwerionenforschung GmbH Configurations of magnets in 33 multiplets 28 standard configuration, 5 special configurations

GSI Helmholtzzentrum für Schwerionenforschung GmbH Maximum standard configuration

GSI Helmholtzzentrum für Schwerionenforschung GmbH Special configurations

GSI Helmholtzzentrum für Schwerionenforschung GmbH Magnet parameters Quadrupole Type 3 Quadrupole Type 4 SextupoleSteerer Number of Magnets (13v/1h) Effective length0.8 m1.2 m0.5 m Gradient/ Field Range T/m 4-40 T/m T ∫gdl T/m*m T/m*m2-20 T/m 2 *m≥ ± 0.1 T*m Field Quality For g< 0.8 g max ±1·10 -3 For g > 0.8 g max ±6·10 -3 For g< 0.8 g max ±1·10 -3 For g > 0.8 g max ±6·10 -3 ±5·10 -3 ±8·10 -3 Usable apertureØ 380 mm Embedded Octupole 105 T/m³ Int. 84 T/m 3 ×m Magnets are operated (DC) at all field levels between minimum and maximum !

GSI Helmholtzzentrum für Schwerionenforschung GmbH Tolerances/accuracy Axes tolerances of position, pitch yaw and roll of each single magnet in a multiplet in relation to the best multiplet axis which is represented by the references outside the Multiplet cryostat. Maximum allowed total error between position of magnetic axis and mechanical axis (related to outside references of the cryostat) ±0.2 mm Tolerance on pitch and yaw (related to outside references of the cryostat) ±0.29 mrad Tolerance on roll (related to outside references of the cryostat) ±1.15 mrad Alignment only possible with regards to common best multiplet axis

GSI Helmholtzzentrum für Schwerionenforschung GmbH Tolerances/accuracy Accuracy (difference of the integrated flux density between two magnets which are identical in construction and powered with the same current) Quadrupoles≤ 0.25 % Sextupoles≤ 0.4 % Steerer≤ 0.4 %

GSI Helmholtzzentrum für Schwerionenforschung GmbH Coordinate system (Technical Guideline) not fixed: origin of coordinate system

GSI Helmholtzzentrum für Schwerionenforschung GmbH Magnetic field simulations All field caculations by A. Kalimov (St. Petersburg)  Quadrupoles

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Coupling Quadruple-Sextupole Variation of distance between yokes from 500 mm to 200 mm

GSI Helmholtzzentrum für Schwerionenforschung GmbH Coupling Quadruple-Sextupole 500 mm250 mm 200 mm

GSI Helmholtzzentrum für Schwerionenforschung GmbH Coupling Quadruple-Sextupole 250 mm distance was chosen as compromise between space limit and field distortion

GSI Helmholtzzentrum für Schwerionenforschung GmbH Strayfield

GSI Helmholtzzentrum für Schwerionenforschung GmbH Conclusions  28 standard multiplets (long and short)  5 special configurations  Measurements at different field levels are required  Alignment only possible with regards to common axis of a multiplet  For given distance some cross-talk between magnet is expected