Future Physics at EURISOL Peter Butler. Physics requirements 5-20 MeV/u 1-5 MeV/u 150 MeV/u.

Slides:



Advertisements
Similar presentations
MINIBALL g-ray Spectroscopy far from Stability
Advertisements

University of Liverpool
Γ spectroscopy of neutron-rich 95,96 Rb nuclei by the incomplete fusion reaction of 94 Kr on 7 Li Simone Bottoni University of Milan Mini Workshop 1°-
Unit 3 Part 2 The Periodic Table ICP Mr. Patel SWHS.
Chapter 7 periodic trends
One-qusiparticle excitations of the heavy and superheavy nuclei A. Parkhomenko and and A.Sobiczewski Institute for Nuclear Studies, ul. Hoża 69, Warsaw.
Single particle properties of heavy and superheavy nuclei. Aleksander Parkhomenko.
Limits of Stability Neutron Drip Line? Proton Drip Line? Known Nuclei Heavy Elements? Fission Limit?
The Nature of Molecules
Periodic Table – Filling Order
Development of the Periodic Table. Mendeleev’s Periodic Table "...if all the elements be arranged in order of their atomic weights a periodic repetition.
© AS Jul-12. Electronegativity = the power of an atom to attract the electrons in a covalent bond.
Binary Compounds Metals (variable oxidation) + Nonmetals.
Metals, Nonmetals, Metalloids. Metals and Nonmetals Li 3 He 2 C6C6 N7N7 O8O8 F9F9 Ne 10 Na 11 B5B5 Be 4 H1H1 Al 13 Si 14 P 15 S 16 Cl 17 Ar 18 K 19 Ca.
CH. 2 atomic models electronic configuration oxidation numbers
Unit 4 The Periodic Table Chemistry I Mr. Patel SWHS.
The Youngsters in Theoretical Nuclear Physics An Ace up France’s sleeve in the RIB competition.
Please do not write on this document. Thank you. Atomic Radius Data Element Name Atomic Number Atomic Radius (pm) Height of Straws (cm) H He
Periodic Table of Elements. gold silver helium oxygen mercury hydrogen sodium nitrogen niobium neodymium chlorine carbon.
CERN NuPAC meeting Dec 2005 The future of ISOLDE: accelerated radioactive beams Peter Butler 1.HIE-ISOLDE 2.EURISOL.
Chemical Families. Groups of Elements   Lanthanides Li 3 He 2 C6C6 N7N7 O8O8 F9F9 Ne 10 Na 11 B5B5 Be 4 H1H1 Al 13 Si 14 P 15 S 16 Cl.
Trends of the Periodic Table
Periodic Table Of Elements
Metals, Nonmetals, Metalloids
Ions Wednesday January 8, 2014
Nuclear structure around 100 Sn Darek Seweryniak, ANL.
s p d (n-1) f (n-2) 6767 Periodic Patterns 1s1s1s1s 2s2s2s2s 3s3s3s3s 4s4s4s4s 5s5s5s5s 6s6s6s6s 7s7s7s7s 3d3d3d3d 4d4d4d4d 5d5d5d5d 6d6d6d6d 1s1s1s1s.
Organization of The Periodic Table Mrs. Russotto.
Bellwork, Fri. Sept. 14 Which element is LEAST likely to combine with another element to form a molecule? -Chlorine (Cl), a halogen -Iron (Fe), a metal.
Modern Periodic Table Objective:
RNB Cortina d’Ampezzo, July 3th – 7th 2006 Elisa Rapisarda Università degli studi di Catania E.Rapisarda for the Diproton collaboration 18 *
Alkali Metals, Group 1 H N OF Cl Br I Li Na K Fr Be Mg Ca Ra Sc Ac He Ne Ar Kr Rn Ti V Cr Mn Fe Co Ni Cu ZnGa Ge As Se Rb Sr Y Xe Zr Nb Mo Tc Ru Rh Pd.
UK Research in Nuclear Physics P J Nolan University of Liverpool.
Periodic Table Li 3 He 2 C6C6 N7N7 O8O8 F9F9 Ne 10 Na 11 B5B5 Be 4 H1H1 Al 13 Si 14 P 15 S 16 Cl 17 Ar 18 K 19 Ca 20 Sc 21 Ti 22 V 23 Cr.
Periodic Table of Elements
Trends in Heavy Ion Physics Research, Dubna, May Present and future physics possibilities at ISOLDE Karsten Riisager PH Department, CERN
Chapter 6 Metals, Nonmetals, Metalloids. Metals and Nonmetals Li 3 He 2 C6C6 N7N7 O8O8 F9F9 Ne 10 Na 11 B5B5 Be 4 H1H1 Al 13 Si 14 P 15 S 16 Cl 17 Ar.
Trends of the Periodic Table. Electronegativity ElectronegativityyElectronegativityy.
Summary: Physics Opportunities for ISOLDE and n_TOF Peter Butler.
Periodic Table Li 3 He 2 C6C6 N7N7 O8O8 F9F9 Ne 10 Na 11 B5B5 Be 4 H1H1 Al 13 Si 14 P 15 S 16 Cl 17 Ar 18 K 19 Ca 20 Sc 21 Ti 22 V 23 Cr.
Electron Configuration
S2 SCIENCE CHEMICAL REACTIONS
1.7 Trends in the Periodic Table
1 H 2 He 3 Li 4 Be 5 B 6 C 7 N 8 O 9 F 10 Ne 11 Na 12 Mg 13 Al 14 Si
Coupling of germanium detectors to the ISS
Periodensystem Biomaterials Research - Manfred Maitz H He Li Be B C N
Masses of noble gases David Lunney CERN contact: Sarah Naimi, CSNSM
KS4 Chemistry The Periodic Table.
Do Now: Answer the following:
Emission of Energy by Atoms and Electron Configurations
Trends of the Periodic Table
Periodic Table Kelter, Carr, Scott, Chemistry A Wolrd of Choices 1999, page 74.
Periodic Trends Atomic Size Ionization Energy Electron Affinity
Chemsheets AS006 (Electron arrangement)
WHAT THE HECK DO I NEED TO BE ABLE TO DO?
Periodic Table of the Elements
Chemsheets AS006 (Electron arrangement)
4.2 IONIZATION ENERGY 4.6 TABLE 4.2 Ionization Energy of the Elements
What Things Do I have To Memorize in AP Chem?
PERIODIC TABLE OF ELEMENTS
Journal: Choose one of these Periodic Table ideas or come up with your own. Explain what different CATEGORIES/SECTIONS you would make to group your “Elements”
Electron Configurations
DETECTION LIMITS < 1 ppt ng/L 1-10 ppt ng/L ppt ng/L
Line Spectra and the Bohr Model
The Periodic Table Part I – Categories of Elements
PPT - Forming Ionic Compounds
Introduction to Periodic Trends
PeRiOdIc TaBlE of ElEmEnTs
Electron Configurations and the Periodic Table
→ Atomic radius decreases → Ionization energy increases → Electronegativity increases →
Presentation transcript:

Future Physics at EURISOL Peter Butler

Physics requirements 5-20 MeV/u 1-5 MeV/u 150 MeV/u

“BRAD-WITEK PLOT”, circa 1997

Physics1-20 MeV/u150 MeV/u Exotic collectivityMultiple excitation Nuclear shape Giant collective modes Very exotic nuclei Shell evolutionParticle, hole studiesHole studies for lighter nuclei np-pairing, nn correlations d transfer to T=0, T=1 2n transfer Correlations from knock- out reactions Isospin mixingPrecise B(E2) valuesEnergy levels Halo nucleiStudy of resonances E1 response by (p,p’) Mass radii Momentum distributions Nucleosynthesis energy generation Direct and surrogate s.p. structure Coulomb dissociation, masses, r-process path Equation of stateIsospin dependence Fundamental interactions Beyond standard model beta-beamsNeutrino interactions SCOPE OF EURISOL H. Fynbo Tuesday pm F. Gulminelli Tuesday pm A. Goergen Tuesday pm S. Lenzi Tuesday pm K. Sonnabend Tuesday pm N. Severijns Tuesday pm R. Page Tuesday pm B. Balantekin Tuesday pm

Peter Butler World ISOL accelerated beams FACILITYDRIVERPOWERUSER BEAMS ACCELERATED ENERGY LOUVAINE- LA-NEUVE (BELGIUM) MeV protons 6 kW 6 He, 7 Be, 10,11 C, 13 N, 15 O, 18 F, 18,19 Ne, 35 Ar 10 MeV/u cyclotron HRIBF Oak Ridge (USA) MeV p, d,  (-ve ion source) 1 kW 7 Be, 17,18 F, 69 As, Cu, 67,83-85 Ga, 78,82-86 Ge, 69 As, 83,84 Se, 92 Sr, 117,118 Ag, 126,128, Sn, 129 Sb, 129,132,134,136 Te MeV/u tandem ISAC TRIUMF (CANADA) MeV protons 50 kW 8,9,11 Li, 11 Be, 18 F, 20-22, Na, 23 Mg, 26 Al MeV/u linac SPIRAL GANIL (FRANCE) MeV/u heavy ions 6 kW 6,8 He, 14,15,19-21 O, 18 F, 17-19,23-26 Ne, 33-35, 44,46 Ar, Kr MeV/u cyclotron REX ISOLDE (CERN) GeV protons 3 kW 8,9,11 Li, Be, 10 C, 17 F, Na, Mg, 61,62 Mn, 61 Fe, 68 Ni, 67-71,73 Cu, 74,76,78,80 Zn, 70 Se, 88,92 Kr, 96 Sr, 108 In, 106,108,110 Sn, 122,124,126 Cd, 138,140,142,144 Xe, 140,142,148 Ba, 148 Pm, 153 Sm, 156 Eu, 182,184,186,188 Hg, 202,204 Rn MeV/u linac

ISOL beams – direct target ~ 65 elements > 700 nuclides shell structure n-p pairing shape co- existence octupoles shell structure rp- process SHE x particles /s (EURISOL) r-process halo nuclei

Nuclear shapes I Skyrme HF Moreno et al. PRC 73 (2006) Yoshida and Takigawa PRC 55 (1997)1255

Strongly-coupled matrix elements Band mixing Sign, magnitude of deformation Nuclear shapes II Coulomb Excitation

74 Kr 4.7 MeV/u beam on radioactive target4.7 MeV/u radioactive beam - SPIRAL 3 MeV/u radioactive beam - REX See A. Goergen Tuesday pm Wollersheim et al. Nucl. Phys. A556 (1993) 261 Clément et al. Phys. Rev C75 (2007) Bree, Petts et al. Hasselgren and Cline Proc. Erice conf. (1980) p.89 Nuclear shapes III Coulomb Excitation

Coulomb excitation populates odd and even-even Radon and Radium with N~134 Octupole shapes and the Standard Model I

223 Rn or 225 Ra? Tests of CP invariance in hadronic sector from static Electric Dipole Moment (EDM) of atom (best limits so far from 199 Hg on _ ~  QCD d d C T C S  q SUSY  Higgs  LR ) Expect enhancement (by 10 2 ) of EDM in octupole radioactive nuclei, e.g. 223 Rn, 225 Ra See also N. Severijns Tuesday pm See, e.g. Dobaczewski and Engel Phys. Rev. Lett. 94 (2005) Schiff moment parity doublet octupole deformation Octupole shapes and the Standard Model II

Evolution of Shell Structure I Otsuka et al. Phys Rev Lett 95 (2005)

Expect turnaround in trend, if tensor force drives changes, for higher Z. Test with transfer using 132 Sn, 134 Te, 146 Gd, 148 Dy, 150 Er Evolution of Shell Structure II Transfer reaction, e.g. (d,p), measurements locate single-neutron particle states outside inert core. also allows testing outside N=126 using beams: 206 Hg, ( 210 Po), 212 Rn and 214 Ra See also S. Lenzi Tuesday pm Kay et al. Phys. Lett. B658 (2008) 216

HELIOS EMMA VAMOS See also R. Page Tuesday pm

50 pnA 92 Kr Dy → 254 No 0.5 pnA 94 Kr Dy → 256 No 50 pnA 92 Kr Er → 260 Rf (  ~ 10nb) 251 Md 248, 253 No Deformed SHE region I 20 pnA 48 Ca  ~ 1  b Herzberg & Greenlees Prog. Part Nucl. Phys. 61 (2008) Ca + Hg, Tl, Pb, Bi  ~ 100nb - 2  b

Egido & Robledo PRL Kr Dy  256 No * E x = 24 MeV Deformed SHE region II

Absolute σ(T=0) and σ(T=1) σ(T=0) / σ(T=1) After Machiavelli Neutron-proton pairing I T=1 J=0 T=0 J=1

5x10 5 /s 56 Ni( 3 He, p) 58 Cu 10 5 /s 72 Kr( 3 He, p) 74 Rb 44 Ti (Machiavelli et al) Neutron-proton pairing II single particle super- fluid See also S. Lenzi Tuesday pm  (T=1) /  (T=0)

Dominated by (p,  ) and ( ,p) reactions direct (p,  ) or ( 3 He,d) as surrogate of (p,  ) (p,  ) as inverse of ( ,p) X-ray bursts (rp-process) Dominated by (n,  ) reactions - r-process pathway largely unknown -understanding of shell evolution important (d,p) as surrogate of (n,  ) measure global properties such as mass and lifetime Supernovae (r-process) Nuclear Astrophysics See K. Sonnabend Tuesday pm

Secondary fragmentation of 132 Sn beam See J. Benlliure Tuesday am D. Loureiro et al. Zakopane proceedings (2008)

Expected reach of EURISOL fragmentation heaviest stable New Pd 125 r-process & drip-line Karlsruher Nulidkarte cold fission N= COFRA GSI present: 10 3 /sFAIR: 10 8 /sEURISOL: /s

Physics from next generation European ISOL RIB facilities

LP-SPLMMW-SPL 200 kW100 MeV/u EUROPEAN ISOL ROADMAP

FINIS

HIE-ISOLDE will allow studies of reactions crucial for understanding profile of X-ray bursts in binary systems  critical reactions are (α,p) reactions on proton-rich nuclei

Z  IGNITION REACTIONS NOVA, X-RAY Bursts,Type I SN rp process

driver accelerator thin targethigh-temperature thick target fragment separator experiment ion source mass separator storage ring In-Flight (e.g.FAIR)ISOL (e.g. HIE-ISOLDE) heavy ions protons post accelerator GeV/u (  s) cooling to MeV/u (s) meV to 10 MeV/u (ms to several s) IF versus ISOL (PS- Booster 1.4 GeV)

European Roadmap for RIB facilities 70 kW direct target 200 kW fission conv.target 100 MeV/u fragments Qu. 5,

Restricted to axial symmetry : no K=2 states B(E2) values e 2 fm 4 Shape coexistence in mean-field models: Skyrme M. Bender, P. Bonche and P.H. Heenen Phys Rev C74 (2006) HFB+GCM method Skyrme SLy6 force density dependent pairing interaction

Shape coexistence in mean-field models: Gogny J-P. Delaroche et al. Axial and triaxial degrees of freedom HFB+GCM with Gaussian overlap approximation Gogny D1S force B(E2) values e 2 fm 4

EURISOL yields FAIR:

Qu MeV/u radioactive beam 74 Kr ISOL: detailed spectroscopic information In-flight (NuSTAR-HISPEC): single step excitation farther from stability 4.7 MeV/u beam on radioactive target4.7 MeV/u radioactive beam

 NuSTAR provides beams at 200 MeV/u  Cannot measure particle configurations at these energies  Knockout reactions measure hole states  Large degree of mixing for hole states  Assignment for high l –values uncertain Qu.6 Hole states ( 3 He,  10 MeV/u) Particle states ( , 3 He 12.5 MeV/u)