數值方法 2008, Applied Mathematics NDHU 1 Ordinary differential equations II Runge-Kutta method.

Slides:



Advertisements
Similar presentations
Prof. Muhammad Saeed ( Ordinary Differential Equations )
Advertisements

Chapter 6 Differential Equations
數值方法 2008, Applied Mathematics NDHU 1 Nonlinear systems Newton’s method The steepest descent method.
Numeriska beräkningar i Naturvetenskap och Teknik 1. Numerical differentiation and quadrature Discrete differentiation and integration Trapezoidal and.
Solving Equations = 4x – 5(6x – 10) -132 = 4x – 30x = -26x = -26x 7 = x.
11 September 2007 KKKQ 3013 PENGIRAAN BERANGKA Week 10 – Ordinary Differential Equations 11 September am – 9.00 am.
Initial-Value Problems
CVEN Exam 1 Review. Matlab.m files Matlab.m files Programming: FOR, WHILE, IF and FUNCTION Programming: FOR, WHILE, IF and FUNCTION Taylor Series.
王俊鑫 (Chun-Hsin Wang) 中華大學 資訊工程系 Fall 2002 Chap 2 Numerical Methods for First-Order Differential Equations.
ECIV 301 Programming & Graphics Numerical Methods for Engineers REVIEW III.
Numerical Solutions of Ordinary Differential Equations
NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS
CISE301_Topic8L31 SE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture KFUPM (Term 101) Section 04 Read , 26-2,
Algebra Foundations Box Factoring or acb Method x 2 - 4x + 4 x2x2 4.
Numerical Solution of Ordinary Differential Equation
Fin500J Topic 7Fall 2010 Olin Business School 1 Fin500J Mathematical Foundations in Finance Topic 7: Numerical Methods for Solving Ordinary Differential.
CSE 330 : Numerical Methods Lecture 17: Solution of Ordinary Differential Equations (a) Euler’s Method (b) Runge-Kutta Method Dr. S. M. Lutful Kabir Visiting.
PART 7 Ordinary Differential Equations ODEs
-S.SIVARAJA Dept of MATHEMATICS.  N-NUMERICAL  M-METHODS EASY TO LEARN & EASY TO SCORE.
Ring Car Following Models by Sharon Gibson and Mark McCartney School of Computing & Mathematics, University of Ulster at Jordanstown.
Lecture 35 Numerical Analysis. Chapter 7 Ordinary Differential Equations.
EE3561_Unit 8Al-Dhaifallah14351 EE 3561 : Computational Methods Unit 8 Solution of Ordinary Differential Equations Lesson 3: Midpoint and Heun’s Predictor.
數值方法 2008, Applied Mathematics NDHU 1  Nonlinear Recursive relations  Nonlinear recursive relations  Time series prediction  Hill-Valley classification.
Computational Method in Chemical Engineering (TKK-2109)
An Over View of Runge-Kutta Fehlberg and Dormand and Prince Methods. Numerical Methods To Solve Initial Value Problems William Mize.
10/20/ Runge 2 nd Order Method Chemical Engineering Majors Authors: Autar Kaw, Charlie Barker
Solving Quadratic Equations by Factoring. Solution by factoring Example 1 Find the roots of each quadratic by factoring. factoring a) x² − 3x + 2 b) x².
5/30/ Runge 4 th Order Method Chemical Engineering Majors Authors: Autar Kaw, Charlie Barker
Numerical Methods for Solving ODEs Euler Method. Ordinary Differential Equations  A differential equation is an equation in which includes derivatives.
11/17/ Shooting Method Major: All Engineering Majors Authors: Autar Kaw, Charlie Barker
Finite Difference Methods Definitions. Finite Difference Methods Approximate derivatives ** difference between exact derivative and its approximation.
Numerical Analysis – Differential Equation
Introduction to the Runge-Kutta algorithm for approximating derivatives PHYS 361 Spring, 2011.
Please remember: When you me, do it to Please type “numerical-15” at the beginning of the subject line Do not reply to my gmail,
數值方法 2008, Applied Mathematics NDHU1 Chaos time series.
1/16/ Runge 4 th Order Method Civil Engineering Majors Authors: Autar Kaw, Charlie Barker
1/19/ Runge 4 th Order Method Major: All Engineering Majors Authors: Autar Kaw, Charlie Barker
Today’s class Ordinary Differential Equations Runge-Kutta Methods
Lecture 40 Numerical Analysis. Chapter 7 Ordinary Differential Equations.
Ordinary Differential Equations
2/28/ Runge 4 th Order Method Computer Engineering Majors Authors: Autar Kaw, Charlie Barker
Lecture 39 Numerical Analysis. Chapter 7 Ordinary Differential Equations.
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Part 6 - Chapters 22 and 23.
CALCULUS REVIEW BME 3510 C PO-WEI CHEN 8/19/2014.
Engineering Problem Solution
Part 7 - Chapter 25.
Numerical Methods by Dr. Laila Fouad.
Ordinary Differential Equations
Numerical Solution of Ordinary Differential Equation
Numerical Solutions of Ordinary Differential Equations
SE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture KFUPM (Term 101) Section 04 Read , 26-2, 27-1 CISE301_Topic8L4&5.
First-Order Differential Equations
Ordinary differential equaltions:
Part 7 - Chapter 25.
ORBITAL Trajectories!!! Made by Karol Sanchez
WELCOME TO MY CLASS NUMERICAL METHOD Name : Masduki
Numerical Analysis Lecture 37.
Numerical Solutions of Ordinary Differential Equations
SE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture KFUPM (Term 101) Section 04 Read , 26-2, 27-1 CISE301_Topic8L2.
Numerical Analysis Lecture 38.
Numerical solution of first-order ordinary differential equations
Use power series to solve the differential equation. y ' = 7xy
SE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture KFUPM (Term 101) Section 04 Read , 26-2, 27-1 CISE301_Topic8L6.
SE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture KFUPM Read , 26-2, 27-1 CISE301_Topic8L3 KFUPM.
Numerical Computation and Optimization
Sec 23: Runge–Kutta Methods
MATH 2140 Numerical Methods
CISE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture KFUPM Read , 26-2, 27-1 CISE301_Topic8L7 KFUPM.
Numerical solution of first-order ordinary differential equations 1. First order Runge-Kutta method (Euler’s method) Let’s start with the Taylor series.
CISE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture KFUPM Read , 26-2, 27-1 CISE301_Topic8L6 KFUPM.
Presentation transcript:

數值方法 2008, Applied Mathematics NDHU 1 Ordinary differential equations II Runge-Kutta method

數值方法 2008, Applied Mathematics NDHU 2 Runge Kutta method- motivation

數值方法 2008, Applied Mathematics NDHU 3 RK2: Secant method First step Euler rule Second step Euler rule

數值方法 2008, Applied Mathematics NDHU 4 Rule of RK2

數值方法 2008, Applied Mathematics NDHU 5 Rule of RK2

數值方法 2008, Applied Mathematics NDHU 6 RK2 method Function x=RK2(fa,a,b,fx) n=100; h=(b-a)/n; x(1)=fa; for i=2:n t=a+(i-1)*h; c=x(i-1); F1=fx(c,t); F2=fx(c+F1,t); x(i)=x(i-1)+(F1+F2)/2; end

數值方法 2008, Applied Mathematics NDHU 7 Demo_RK2 demo_RK2.exe demo_RK2.ctf demo_RK2.m

數值方法 2008, Applied Mathematics NDHU 8 RK2 and RK4

數值方法 2008, Applied Mathematics NDHU 9 Example >> demo_RK2 keyin derivative function of x and t:x+exp(t) a:0 x(a) :1 b:2 h:0.01 hold on; t=0:0.01:2; x=t.*exp(t)+exp(t); plot(t,x,'r')

數值方法 2008, Applied Mathematics NDHU 10 Exercise Implement the Runge-Kutta 2 method for solving an initial value problem Give an example to test your matlab codes

數值方法 2008, Applied Mathematics NDHU 11 Example >> demo_RK2 keyin derivative function of x and t:1+x.^2+t.^3 a:1 x(a) :-4 b:2 h:0.01 ans =

數值方法 2008, Applied Mathematics NDHU 12 Exercise Implement the RK4 method for solving an IVP problem

數值方法 2008, Applied Mathematics NDHU 13 Demo_RK4 demo_RK4.m >> demo_rk4 keyin derivative function of x and t:1+x.^2+t.^3 a:1 x(a) :-4 b:2 h:0.01 ans =

數值方法 2008, Applied Mathematics NDHU 14 Exercise Apply the Euler method, the Taylor-4 method, the RK2 method and the RK4 method to solve the following IVP problem x'=1+x2 +t3, x(1)=-4, x(2)=?

數值方法 2008, Applied Mathematics NDHU 15 Matlab codes for time series data Eric's Home Page

數值方法 2008, Applied Mathematics NDHU 16 Chaos time series

數值方法 2008, Applied Mathematics NDHU 17 Exercise Apply the RK4 method to solve the following IVP problem

數值方法 2008, Applied Mathematics NDHU 18 mg1.m

數值方法 2008, Applied Mathematics NDHU 19 MG mg.m

數值方法 2008, Applied Mathematics NDHU 20 >> mg >> n=length(x); >> plot(1:1:n,x) a=0.2,c=10,b=0.1, mg.m

數值方法 2008, Applied Mathematics NDHU 21 >> load MG17.dat >> n=length(MG17); >> plot(1:1:n,MG17)

數值方法 2008, Applied Mathematics NDHU 22 MG30

數值方法 2008, Applied Mathematics NDHU 23

數值方法 2008, Applied Mathematics NDHU 24 Mackey-Glass demo_mg.m >> demo_mg Mackey Glass generator tau:30 Series length:360000

數值方法 2008, Applied Mathematics NDHU 25 Tau=3 A stable fixed point attractor

數值方法 2008, Applied Mathematics NDHU 26 Tau=10 A stable limit cycle attractor

數值方法 2008, Applied Mathematics NDHU 27 Tau=15 Period of limit cycle doubles

數值方法 2008, Applied Mathematics NDHU 28 Tau=17

數值方法 2008, Applied Mathematics NDHU 29 tau=30 Chaotic attractor characterized by tau