GSI Helmholtzzentrum für Schwerionenforschung GmbH Super-FRS magnet configurations.

Slides:



Advertisements
Similar presentations
Q1 for JLAB’s 12 Gev/c Super High Momentum Spectrometer S.R. Lassiter, P.B. Brindza, M. J. Fowler, S.R. Milward, P. Penfold, R. Locke Q1 SHMS HMS Q2 Q3.
Advertisements

D2 conceptual design and field quality optimization Ramesh Gupta, BNL Slide No. 1 Nov. 13, 2013 D2 Conceptual Design and Field Quality.
GSI Helmholtzzentrum für Schwerionenforschung GmbH Platforms and Infrastructure Collaboration meeting GSI-CERN
A.KOVALENKO SUPERCONDUCTING MAGNETS for NICA BOOSTER & COLLIDER NICA ROUND TABLE DISCUSSION - 3 JINR, Dubna, November 05, 2008.
ADJUSTABLE STRONG PERMANENT MAGNET FOR FINAL FOCUS QUADRUPOLE T. MIHARA, Y.IWASHITA Kyoto University M. KUMADAN.I.R.S. C.M.SpencerS.L.A.C.
PXIE: SSR1 Section Focusing Lens 1.Requirements table 2.Developed at FNAL 3.Available from vendors 4.Used at ANL 5.Layout of the SSR1 cryomodule 6.Case.
Linac Quad Field and Position Stability Chris Adolphsen SLAC.
Quadrupole Magnetic Design for an Electron Ion Collider Paul Brindza May 19, 2008.
IR Magnets for SuperKEKB KEK, Norihito Ohuchi 1.IR Magnets (ES, QCS, QC1) 2.Interference between Magnet-Cryostats and Belle 3.Summary SuperB.WS05.Hawaii.
1 Update on Focus Coil Design and Configuration M. A. Green, G. Barr, W. Lau, R. S. Senanayake, and S. Q. Yang University of Oxford Department of Physics.
Superconducting Large Bore Sextupole for ILC
1 / 19 M. Gateau CERN – Geneva – CH 14th International Magnetic Measurement Workshop September 2005, Geneva, Switzerland.
SuperFRS Multiplett and Dipole Vacuum Interfaces Multiplett: Insulation vacuum: Insulation Vacuum Pumping flanges: Two CF flanges of the size DN160 must.
Magnet designs for Super-FRS and CR
Task7: NUSTAR2 - Design and Prototype Construction of a Radiation-Resistant Magnet C. Mühle GSI Task leader: G. Moritz /GSI.
IHEP participation in SIS300 production UNILAC SIS 18 SIS 100/300 HESR Super FRS NESR CR RESR Institute for High Energy Physics Protvino, Russia FAIR meeting.
1 LHC IR Quadrupole Alignment Experience at Fermilab T. Beale, J. DiMarco, J. Nogiec, P. Schlabach, C. Sylvester, J. Tompkins, G. Velev 28 September 2005.
Hall C Meeting SHMS Magnets and Support Structure Design and Procurement Status Paul Brindza January 26, 2009.
GSI Helmholtzzentrum für Schwerionenforschung GmbH Status of Super-FRS Construction M. Winkler CERN-GSI Technical Coordination Meeting.
Task7: NUSTAR2 - Design and Prototype Construction of a Radiation-Resistant Magnet C. Mühle GSI Task leader: G. Moritz /GSI.
Focusing Lens for the SSR1 Section of PXIE Preliminary analysis of main options 3/13/2012I. Terechkine1.
Status of GSI-FAIR Project magnets - open issues - G. Moritz GSI CARE HHH AMT November
Orbit Correctors in D2 and Q4 Update J. Rysti and E. Todesco 1 4/11/2014.
CLIC Workshop th -17 th October 2008 Thomas Zickler AT/MCS/MNC 1 CLIC Main Linac Quadrupoles Preliminary design of a quadrupole for the stabilization.
The Cosine Two Theta Quadrupole Magnets for the Jefferson Lab Super High Momentum Spectrometer (SHMS). P.B. Brindza, S.R. Lassiter M. J. Fowler Abstract—
Bending Magnets for the Metrology Light Source
Muon Cooling Channel Superconducting Magnet Systems Muon Collider Task Force Meeting on July 31, 2006 V.S. Kashikhin.
Consolidation of the Booster Injection Quadrupole Magnets (part 2) A. Aloev 14 th February 2013.
XFEL X-Ray Free-Electron Laser Bernward Krause MEA WP-12: Warm Magnets WPL: B. Krause.
CLIC Stabilisation Day’08 18 th March 2008 Thomas Zickler AT/MCS/MNC/tz 1 CLIC Quadrupoles Th. Zickler CERN.
CLIC requirements on Warm Magnets (for CLIC Modules mainly) 1 M. Modena, CERN TE-MSC 13 April 2011 CERN-UK Collaboration Kick-off Meeting.
Correctors magnets V. Zubko, IHEP, Protvino SIS 300 Pre-consortium Meeting Thursday 19 March 2009, Protvino.
ILC Main Linac Superconducting Quadrupole V. Kashikhin for Superconducting Magnet Team.
CERN – GSI plenary coordination meeting, Magnetic Measurements WP.
Super Fragment Separator (Super-FRS) Machine and Magnets H. Leibrock, GSI Darmstadt Review on Cryogenics, February 27th, 2012, GSI Darmstadt.
1 Magnetic measurements of the Super-FRS magnets 1 Overview: - Measurement systems for dipoles - requirements - Measurement systems review - Open points.
CERN –GSI/CEA MM preparation meeting, Magnetic Measurements WP.
GSI Helmholtzzentrum für Schwerionenforschung GmbH The Optimized Superconducting Dipole of SIS100 for Series Production ICEC26 March 9th, 2016 GSI Helmholtzzentrum.
FNAL Workshop, July 19, 2007 ILC Main Linac Superconducting Quadrupole V.Kashikhin 1 ILC Main Linac Superconducting Quadrupole (ILC HGQ1) V. Kashikhin.
September 27, 2007 ILC Main Linac - KOF 1 ILC Main Linac Superconducting Quadrupole V. Kashikhin for Magnet group.
Yingshun Zhu Design of Small Aperture Quadrupole Magnet for HEPS-TF
GSI Helmholtzzentrum für Schwerionenforschung GmbH Super-FRS multiplet field.
HTS and LTS Magnet Design and Prototyping for RAON
The Super-FRS Multiplet, Magnetic and Cryogenic requirements
Tutorial On Fiducialization Of Accelerator Magnets And Undulators
Yingshun Zhu Accelerator Center, Magnet Group
Safety aspects of superconducting magnets for Super-FRS
CBM magnet overview of the BINP work
High Gradient Magnet Design for SPring-8 Upgrade Plan
SLHC –PP WP6 LHC IR Upgrade - Phase I.
Procurement, Measurement and Installation of 2 Octupoles for ATF
Testing of SC Magnets Status - November 2010
6th BINP-FAIR-GSI Workshop,
Alexander Kalimov, State Polytechnic University, St.-Petersburg
(Procurement, testing of magnets)
EFREMOV INSTITUTE SAINT PETERSBURG RUSSIA
Conceptual Design of CEPC Interaction Region Superconducting Magnets
Yingshun Zhu Accelerator Center, Magnet Group
Compact and Low Consumption Magnet Design The DESY Experience
Beam dynamics of Super-FRS and MM requirements
SCU Next Phase Meeting July 8, 2014.
FAIR magnets fiducialisation WP 7.5
MQYY: superconducting Quadrupole magnet for Hl-lhc
PERMANENT MAGNET QUADRUPOLE FOR THE LINAC 4 CCDTL
Updated concept of the CBM dipole magnet
FNAL Superconducting Quadrupole Test
Conceptual design of superconducting correctors for Hi-Lumi Project (v2) F. Toral - CIEMAT CIEMAT, March 7th, 2013.
J. García, F. Toral (CIEMAT) P. Fessia (CERN)
CEPC Collider Magnets CHEN, Fusan November 13, 2018.
Feasibility of Recuperation of Magnets in Decommissioned Storage Rings
Presentation transcript:

GSI Helmholtzzentrum für Schwerionenforschung GmbH Super-FRS magnet configurations

GSI Helmholtzzentrum für Schwerionenforschung GmbH General Design of SC Multiplet 25 long multiplets + 8 short multiplets Cold, laminated iron yoke (> 40 tons), Warm beam pipe (38 cm inner diameter) Common helium bath (~ 1300 liter helium) 1 pair of current leads per magnet max. current < 300 A for all magnets ~ 7 m long, > 60 tons 1 x long quadrupole (LQ) 2 x short quadrupole (SQ) equipped with octupole (O) coil 3 x sextupole (S) 1 x steering dipole (ST) (longest multiplet system) SQ+O LQ S S S ST short multiplet

GSI Helmholtzzentrum für Schwerionenforschung GmbH Magnet parameters Quadrupole Type 3 Quadrupole Type 4 SextupoleSteerer Number of Magnets (13v/1h) Effective length0.8 m1.2 m0.5 m Gradient/ Field Range T/m 4-40 T/m T ∫gdl T/m*m T/m*m2-20 T/m 2 *m≥ ± 0.1 T*m Field Quality For g< 0.8 g max ±1·10 -3 For g > 0.8 g max ±6·10 -3 For g< 0.8 g max ±1·10 -3 For g > 0.8 g max ±6·10 -3 ±5·10 -3 ±8·10 -3 Usable apertureØ 380 mm Embedded Octupole 105 T/m³ Int. 84 T/m 3 ×m Magnets are operated (DC) at all field levels between minimum and maximum !

GSI Helmholtzzentrum für Schwerionenforschung GmbH Tolerances/accuracy Axes tolerances of position, pitch yaw and roll of each single magnet in a multiplet in relation to the best multiplet axis which is represented by the references outside the Multiplet cryostat. Maximum allowed total error between position of magnetic axis and mechanical axis (related to outside references of the cryostat) ±0.2 mm Tolerance on pitch and yaw (related to outside references of the cryostat) ±0.29 mrad Tolerance on roll (related to outside references of the cryostat) ±1.15 mrad Alignment only possible with regards to common best multiplet axis

GSI Helmholtzzentrum für Schwerionenforschung GmbH Tolerances/accuracy Accuracy (difference of the integrated flux density between two magnets which are identical in construction and powered with the same current) Quadrupoles≤ 0.25 % Sextupoles≤ 0.4 % Steerer≤ 0.4 %

GSI Helmholtzzentrum für Schwerionenforschung GmbH Configurations of magnets in 33 multiplets 28 standard configuration (21 triplets, 5 short multiplets), 5 special configurations

GSI Helmholtzzentrum für Schwerionenforschung GmbH Maximum standard configuration If coordinate 0 at midpoint of long multiplet magnet positions and effective lengths are: XL_effMagnet Type Sextupole Short Quadrupole+Octupole Sextupole/Steerer 01.2Long Quadrupole Sextupole/Steerer Short Quadrupole+Octupole Sextupole Distance between adjacent magnet centers [m] effective magnet length beam direction

GSI Helmholtzzentrum für Schwerionenforschung GmbH Maximum standard configuration Open: Definition of coordinate origin (position of magnet with regards to fiducials) Measured at warm by manufacturer Chain: magnet → magnet column → He-vessel → cryostat

GSI Helmholtzzentrum für Schwerionenforschung GmbH Long Multiplet Chain: magnet → magnet column → He-vessel → cryostat Measured at warm by manufacturer

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Special configurations distance between adjecent magnet centers

GSI Helmholtzzentrum für Schwerionenforschung GmbH Dipoles Arranged in groups of 3 Dipole Type 2Dipole Type3 Number of Magnets321 Effective length2.40 m2.13 m Gradient/ Field Range T Field Quality  3  Usable aperture380x140 mm

GSI Helmholtzzentrum für Schwerionenforschung GmbH Configurations MagnetConf.MagnetConf. FPF4MH1AFHF1MH1C FPF4MH12AFHF1MH12C FPF4MH13AFHF1MH13C FMF1MH1AFRF2MH1A FMF1MH12AFRF2MH12A FMF1MH13AFRF2MH13A FMF2MH1BFRF3MH1D FMF2MH12BFRF3MH12D FMF2MH13BFRF3MH13D FMF3MH1BFLF2MH1B FMF3MH12BFLF2MH12B FMF3MH13BFLF2MH13B 11°dipole branched dipole