Quantum Interface through Light-Atom Interactions in Atomic Ensemble Hsiang-Hua Jen ( 任祥華 ) Postdoc in Prof. Daw-Wei Wang’s group, NTHU 2011 Condensed.

Slides:



Advertisements
Similar presentations
Density Matrix Tomography, Contextuality, Future Spin Architectures T. S. Mahesh Indian Institute of Science Education and Research, Pune.
Advertisements

Emergent Majorana Fermion in Cavity QED Lattice
1 Trey Porto Joint Quantum Institute NIST / University of Maryland University of Minnesota 26 March 2008 Controlled exchange interactions in a double-well.
The quantum signature of chaos through the dynamics of entanglement in classically regular and chaotic systems Lock Yue Chew and Ning Ning Chung Division.
Quantum Computing with Trapped Ion Hyperfine Qubits.
Niels Bohr Institute Copenhagen University Quantum memory and teleportation with atomic ensembles Eugene Polzik.

Quantum Entanglement of Rb Atoms Using Cold Collisions ( 韓殿君 ) Dian-Jiun Han Physics Department Chung Cheng University.
Universal Optical Operations in Quantum Information Processing Wei-Min Zhang ( Physics Dept, NCKU )
Solid state realisation of Werner quantum states via Kondo spins Ross McKenzie Sam Young Cho Reference: S.Y. Cho and R.H.M, Phys. Rev. A 73, (2006)
PBG CAVITY IN NV-DIAMOND FOR QUANTUM COMPUTING Team: John-Kwong Lee (Grad Student) Dr. Renu Tripathi (Post-Doc) Dr. Gaur Pati (Post-Doc) Supported By:
Optical Qubits Li Wang Physics 576 3/9/2007. Q.C. Criteria Scalability: OK Initialization to fiducial state: Easy Measurement: Problematic Long decoherence.

Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 5.
Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.
Future Challenges in Long-Distance Quantum Communication Jian-Wei Pan Hefei National Laboratory for Physical Sciences at Microscale, USTC and Physikalisches.
Quantum Computing with Entangled Ions and Photons Boris Blinov University of Washington 28 June 2010 Seattle.
Deterministic teleportation of electrons in a quantum dot nanostructure Deics III, 28 February 2006 Richard de Visser David DiVincenzo (IBM, Yorktown Heights)
Center for Photonic Communication and ComputingMcCormick School of Engineering and Applied Science Entanglement of Macroscopic Ensembles (Schroedinger’s.
Quantum Computation Using Optical Lattices Ben Zaks Victor Acosta Physics 191 Prof. Whaley UC-Berkeley.

Optical control of electrons in single quantum dots Semion K. Saikin University of California, San Diego.
Coherence in Spontaneous Emission Creston Herold July 8, 2013 JQI Summer School (1 st annual!)
Experimental Quantum Teleportation Quantum systems for Information Technology Kambiz Behfar Phani Kumar.
Interfacing quantum optical and solid state qubits Cambridge, Sept 2004 Lin Tian Universität Innsbruck Motivation: ion trap quantum computing; future roads.
Exploring The Quantum Department of Physics Entering the FreezerThe Age of the Qubit HOTCOLD Quantum properties emerge at extremes of energy. We work with.
Dynamical decoupling in solids
Quantum computing with Rydberg atoms Klaus Mølmer Coherence school Pisa, September 2012.
Purdue University Spring 2014 Prof. Yong P. Chen Lecture 5 (2/3/2014) Slide Introduction to Quantum Optics &
Centre for Quantum Physics & Technology, Clarendon Laboratory, University of Oxford. Karl Surmacz (University of Oxford, UK) Efficient Unitary Quantum.
Quantum Computing Paola Cappellaro
Quantum Dense coding and Quantum Teleportation
Bell Measurements and Teleportation. Overview Entanglement Bell states and Bell measurements Limitations on Bell measurements using linear devices Teleportation.
Trap loss of spin-polarized 4 He* & He* Feshbach resonances Joe Borbely ( ) Rob van Rooij, Steven Knoop, Wim Vassen.
“Experimental quantum computers” or, the secret life of experimental physicists 1 – Qubits in context Hideo Mabuchi, Caltech Physics and Control & Dynamical.
Copenhagen interpretation Entanglement - qubits 2 quantum coins 2 spins ( spin “up” or spin “down”) Entangled state many qubits: Entangled state:
Quantum Computation With Trapped Ions Brian Fields.
Quantum Entanglement and Distillation in Information Processing Shao-Ming Fei
Multiparticle Entangled States of the W- class, their Properties and Applications A. Rodichkina, A. Basharov, V. Gorbachev Laboratory for Quantum Information.
Gang Shu  Basic concepts  QC with Optical Driven Excitens  Spin-based QDQC with Optical Methods  Conclusions.
Uni-Heidelberg Physikalisches Insitut Jian-Wei Pan Multi-Particle Entanglement & It’s Application in Quantum Networks Jian-Wei Pan Lecture Note.
Fawaz S. K. Aldafeery. Introduction Quantum memories are important elements for quantum information processing applications such as quantum networks,
Large scale quantum computing in silicon with imprecise qubit couplings ArXiv : (2015)
IEN-Galileo Ferraris - Torino - 16 Febbraio 2006 Scheme for Entangling Micromeccanical Resonators by Entanglement Swapping Paolo Tombesi Stefano Mancini.
Quantum teleportation between light and matter
Aiming at Quantum Information Processing on an Atom Chip Caspar Ockeloen.
Sources, Memories, Detectors Ryan Camacho, Curtis Broadbent, Michael Pack, Praveen Vudya Setu, Greg Armstrong, Benjamin Dixon and John Howell University.
Suggestion for Optical Implementation of Hadamard Gate Amir Feizpour Physics Department Sharif University of Technology.
QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN Qudit Implementations with Energy-Time Entangled Photons 1 Bänz Bessire Quantum Optics Lab – The Stefanov Group.
Christopher Monroe Joint Quantum Institute and Department of Physics NIST and University of Maryland Quantum Computation and Simulation.
Many-Body Effects in a Frozen Rydberg Gas Feng zhigang
Single-photon single-ion interaction in front of a parabolic mirror Magdalena Stobińska, Robert Alicki, Gerd Leuchs Erlangen-Nürnberg University Max Planck.
Jiří Minář Centre for Quantum Technologies
TC, U. Dorner, P. Zoller C. Williams, P. Julienne
Quantum Phase Transition of Light: A Renormalization Group Study
Scheme for Entangling Micromeccanical Resonators
Spontaneous Parametric Down Conversion
Quantum Information and Everything.
Coherent interactions at a distance provide a powerful tool for quantum simulation and computation. The most common approach to realize an effective long-distance.
Ion Trap Quantum Computing and Teleportation
Quantum Engineering & Control
Optical qubits
Cavity QED
Teleportation Between Distant Atoms
Lev Vaidman 23 August 2004, Cambridge Zion Mitrani Amir Kalev
Opening a Remote Quantum Gate
Guin-Dar Lin, Luming Duan University of Michigan 2009 DAMOP Meeting
Introducing complex networks into quantum regime
Quantum Computing Hakem Alazmi Jhilakshi Sharma Linda Vu.
Entangling Atoms with Optical Frequency Combs
Presentation transcript:

Quantum Interface through Light-Atom Interactions in Atomic Ensemble Hsiang-Hua Jen ( 任祥華 ) Postdoc in Prof. Daw-Wei Wang’s group, NTHU 2011 Condensed Matter seminar, NTNU, 10 November, 2011

Rb (Alex Kuzmich group): Alex Radnaev Yaroslav Dudin Corey Campbell Ran Zhao (San Francesco) Shau-Yu Lan (U. C. Berkeley) Thierry Chaneliere (CNRS) Dzmitry Matsukevich (N. U. Singapore) Theory (Brian Kennedy group): Austin Collins Stewart Jenkins (U. Southampton) Hsiang-Hua Jen (NTHU, Taiwan) Sponsors: NSF, AFOSR, ONR Acknowledgements

Quantum interface through interaction of light and atoms Atomic media and entanglement Quantum computers Quantum memory - EIT Quantum repeater : DLCZ protocol Telecom wavelength conversion using a diamond configuration Outlook Outline

Interaction of light and atoms atom e-e-

K. Hammerer, et al., Rev. Mod. Phys. 82, 1041 (2010) Basic interaction and effective Hamiltonian

K. Hammerer, et al., Rev. Mod. Phys. 82, 1041 (2010) Elements for quantum interface EIT memory scheme. Entanglement scheme. Memory+entanglement +teleportation

Atomic media and entanglement Spooky!!

(3) Solid state: frozen motion but inhomogeneous broadening by lattice fields. (a) rare-earth doped crystal – 4 k, s. (Λ scheme or photo-echo rephasing). (b) NV-center diamond – 4k to room-temperature, 600 µs. (c) quantum dot. (4) Ion crystal. Features for various atomic media (1)Room-temperature gas: Doppler broadening/atomic motion. (a) buffer gas – 2 ms (localization). (b) paraffin-coated cell – 1 s (anti-relaxation). (2) Cold and trapped atoms: light focusing at ~10 µm, gradient magnetic fields, optical pumping difficulty. (a) MOT – 100 µk, 100 µs. (b) Dipole trap lattice + clock transition – 6 ms (limited by motional dephasing). (c) BEC – high OD (low generation rate). BEC on chip. K. Hammerer, et al., Rev. Mod. Phys. 82, 1041 (2010)

Separable or entangled J. H. Eberly, arXiv:quant-ph/ v1 J. Math. Phys. Vol. 43, 4237 (2002) Einstein/Podolsky/Rosen: An entangled wavefunction does not describe the physical reality in a complete way. J. Bell:... a correlation that is stronger than any classical correlation. A. Peres: ‘‘... a trick that quantum magicians use to produce phenomena that cannot be imitated by classical magicians.’’ Separable mixed state. : product state.: entangled. What about this one?

Entangled pure bipartite system Why entangled? Dense coding: K. Mattle, et. al., Phys. Rev. Lett. 76, 4656 (1996) Von Neumann entropy:

Bell inequality – classical correlation Quantum Theory: Concepts and Methods (1995), Asher Perez If directions J 1 J 2 are randomly distributed, Correlations: Classical correlations:

Quantum Theory: Concepts and Methods (1995), Asher Perez Bell inequality – quantum correlation Consider two spin1/2 particles in a singlet state, Three tests: Statistics: Upper bound: Inequality violation: CHSH Inequality:

Quantum computation

(1)Scalability: Hilbert space can be exponential grown without an exponential cost. (2) Universal logic gates: single-qubit and C-NOT gates. (3) Correctability: quantum error correction. (1)Photons: KLM scheme with single photon source. (2)Trapped atoms. (3) Liquid-state nuclear magnetic resonance. (4)Quantum dots and dopants in solids. (5)Superconductors. (6)Polar molecules. Rare-earth doped crystal. Carbon nano- materials. Graphene. Topological quantum computation. General criteria for QC Candidates for quantum computers: D. Ladd, et. al., Naure 464, 45 (2010) caveat emptor - 買者自負

QEC_3 qubit code - bit flip Single bit flip error Quantum computation and quantum information (2000), Neilson&Chuang

Quantum memory - EIT

Storage of single photons on control beam S

Demonstration of quantum memory for single photons Nature 438, 833 (2005) S: stored signal – D2 or D3 I: idler – D1

Matter-light entanglement generation and distribution Two-ensemble qubit Science 306, 663 (2004) Polarization (spin) qubit PRL 95, (2005) Two-species qubit PRL 98, (2007) 87 Rb 85 Rb atomic qubit states |+> and |-> state can be prepared and converted into light independently robust atom-photon entanglement robust atom-photon entanglement; atomic qubit states |+> and |-> states are separately addressable

Optically confined quantum memory Nature Physics 5, 100 (2009) e g0g0 g

Quantum repeater

Site A Site B Quantum state transmission Entanglement distribution Site A Site B |  > = |H> |V> + |V> |H> |  > = c|V> + d|H>

Quantum repeater Storage: atomic memory Site A Site B

Quantum repeater Storage: atomic memory Site A Site B Two independent memories

Quantum repeater Storage: atomic memory Site A Site B Entanglement generation

Quantum repeater Site A Site B Entanglement connection

signal write idler read Raman scheme D3D3 L.-M. Duan et al, Nature 414, 413 (2001) Duan-Lukin-Cirac-Zoller quantum repeater D1D1 D2D2 D4D4

Duan-Lukin-Cirac-Zoller quantum swapping B.S. AB Synchronous single click B.S. L.-M. Duan et al, Nature 414, 413 (2001)

PME projection and quantum teleportation B.S. A CD B A CD B I2I2 I1I1 L.-M. Duan et al, Nature 414, 413 (2001)

Wavelength (nm) Fiber loss (dB) Attenuation for fiber transmission

Telecom wavelength conversion

A. G. Radnaev, et al., Nature Physics 6, 894 (2010) Quantum memory with telecom-wavelength conversion

Maxwell-Bloch equations: field part

Self- and cross-coupling coefficients

Diamond configuration: dressed state picture H. H. Jen and T. A. B. Kennedy, PRA 82, (2010)

Optimal frequency conversion H. H. Jen and T. A. B. Kennedy, PRA 82, (2010)

Down-converted pulse conversion

Multi-particle entanglement. Quantum channel capacity. Long distance quantum communication. Advanced architecture for quantum computation. Fidelity and efficiency. Collective excitations via a Rydberg blockade mechanism. Hybrid systems. A demonstration of quantum correlation with telecom wavelength conversion, which provides low-loss quantum network communication. Outlook and conclusion

Thank you for your attention!