H.-G. Moser Halbleiterlabor der Max-Planck- Institute für Physik und extraterrestrische Physik VIPS LP09, Hamburg August 18, 2009 1 R&D on monolithic and.

Slides:



Advertisements
Similar presentations
Radiation damage in silicon sensors
Advertisements

H.-G. Moser Max-Planck-Institut für Physik MPI Semiconductor Laboratory (Halbleiterlabor: HLL) Common project of the: Max-Planck-Institut fuer Physik (Werner.
Ronald Lipton Hiroshima D Sensors - Vertical Integration of Detectors and Electronics Contents: Introduction to three dimensional integration of.
A new idea of the vertex detector for ILC Y. Sugimoto Nov
SPiDeR  First beam test results of the FORTIS sensor FORTIS 4T MAPS Deep PWell Testbeam results CHERWELL Summary J.J. Velthuis.
Application of through-silicon-via (TSV) technology to making of high-resolution CMOS image sensors Name: Qian YU Student ID:
Si Pixel Tracking Detectors Introduction Sensor Readout Chip Mechanical Issues Performance -Diamond.
1 Improved Non-Ionizing Radiation Tolerance of CMOS Sensors Dennis Doering 1 *, Michael Deveaux 1, Melissa Domachowski 1, Michal Koziel 1, Christian Müntz.
Fine Pixel CCD Option for the ILC Vertex Detector
Semi-conductor Detectors HEP and Accelerators Geoffrey Taylor ARC Centre for Particle Physics at the Terascale (CoEPP) The University of Melbourne.
H.-G. Moser Semiconductor Laboratory MPI for Physics, Munich Silicon Detector Systems at Flair Workshop GSI Apr Pixel Detectors based on 3D.
ECFA ILC Workshop, November 2005, ViennaLadislav Andricek, MPI für Physik, HLL DEPFET Project Status - in Summary Technology development thinning technology.
High-resolution, fast and radiation-hard silicon tracking station CBM collaboration meeting March 2005 STS working group.
Fully depleted MAPS: Pegasus and MIMOSA 33 Maciej Kachel, Wojciech Duliński PICSEL group, IPHC Strasbourg 1 For low energy X-ray applications.
1 An introduction to radiation hard Monolithic Active Pixel Sensors Or: A tool to measure Secondary Vertices Dennis Doering*, Goethe University Frankfurt.
CEA DSM Irfu 20 th october 2008 EuDet Annual Meeting Marie GELIN on behalf of IRFU – Saclay and IPHC - Strasbourg Zero Suppressed Digital Chip sensor for.
VIP1: a 3D Integrated Circuit for Pixel Applications in High Energy Physics Jim Hoff*, Grzegorz Deptuch, Tom Zimmerman, Ray Yarema - Fermilab *
ASIC R&D at Fermilab R. Yarema October 30, Long Range Planning Committee2 ASICs are Critical to Most Detector Systems SVX4 – CDF & DO VLPC readout.
MIT Lincoln Laboratory NU Status-1 JAB 11/20/2015 Advanced Photodiode Development 7 April, 2000 James A. Burns ll.mit.edu.
ILC VXD Review, Fermilab, October 23, 2007 Hans-Günther Moser, MPI für Physik DEPFET Devices Hans-Gunther Moser for the DEPFET Collaboration (
1 FNAL Pixel R&D Status R. Lipton Brief overview due to 3 failed MS Powerpoint versions –3D electronics New technologies for vertical integration of electronics.
1 Radiation Hardness of Monolithic Active Pixel Sensors Dennis Doering, Goethe-University Frankfurt am Main on behalf of the CBM-MVD-Collaboration Outline.
Monolithic Active Pixel Sensors (MAPS) News from the MIMOSA serie Pierre Lutz (Saclay)
Position Sensitive Detectors in HEP
FPCCD Vertex detector 22 Dec Y. Sugimoto KEK.
Technology Overview or Challenges of Future High Energy Particle Detection Tomasz Hemperek
H.-G. Moser Max-Planck-Institut fuer Physik 1 st open meeting SuperBelle KEK Summary of PXD Session 1 Status of CAPSH. Hoedlmoser (Video)
Irfu saclay Development of fast and high precision CMOS pixel sensors for an ILC vertex detector Christine Hu-Guo (IPHC) on behalf of IPHC (Strasbourg)
Special Focus Session On CMOS MAPS and 3D Silicon R. Yarema On Behalf of Fermilab Pixel Development Group.
Radiation hardness of Monolithic Active Pixel Sensors (MAPS)
M. Deveaux, CBM-Collaboration-Meeting, 25 – 28. Feb 2008, GSI-Darmstadt Considerations on the material budget of the CBM Micro Vertex Detector. Outline:
On a eRHIC silicon detector: studies/ideas BNL EIC Task Force Meeting May 16 th 2013 Benedetto Di Ruzza.
W. Kucewicz a, A. A.Bulgheroni b, M. Caccia b, P. Grabiec c, J. Marczewski c, H.Niemiec a a AGH-Univ. of Science and Technology, Al. Mickiewicza 30,
CMOS Sensors WP1-3 PPRP meeting 29 Oct 2008, Armagh.
Oct Monolithic pixel detector Update  One chip combining both sensor and read-out – source of ionization e- : epitaxial layer of chip – e- collected.
SuperKEKB 3nd open meeting July 7-9, 2009 Hans-Günther Moser MPI für Physik Sensor and ASIC R&D Sensor Prototype Production: running, ASICs: Switcher,
TRACKING AND VERTEXING SUMMARY Suyong Choi Korea University.
RD program on hybrids & Interconnects Background & motivation At sLHC the luminosity will increase by a factor 10 The physics requirement on the tracker.
Ideas for a new INFN experiment on instrumentation for photon science and hadrontherapy applications – BG/PV group L. Ratti Università degli Studi di Pavia.
H.-G. Moser Max-Planck-Institut für Physik 2nd DEPFET workshop 3-6 May 2009 Open Issues Readout cycle: 10 µs or 20 µs ? Advantages of 20 µs: - smaller.
Highlights from the VTX session Marc Winter & Massimo Caccia R&D reports: – DEPFET (M. Trimpl) – CCD (S. Hillert) – UK-CMOS (J.Velthuis) – Continental-CMOS.
Ideas on MAPS design for ATLAS ITk. HV-MAPS challenges Fast signal Good signal over noise ratio (S/N). Radiation tolerance (various fluences) Resolution.
H.-G. Moser Max-Planck-Institut für Physik Future Vertex Detectors in HEP Projects: LHC (upgrade 2018+) Belle 2 (upgrade 2018+) ILC/CLIC (2020+)
Low Mass, Radiation Hard Vertex Detectors R. Lipton, Fermilab Future experiments will require pixelated vertex detectors with radiation hardness superior.
TILC08, Sendai, March DEPFET Active Pixel Sensors for the ILC Marcel Vos for the DEPFET Collaboration (
Lepton-Photon 2009, Hamburg, August 18, Valerio Re - INFN Organization of Monolithic and Vertically Integrated Pixel Sensor R&D in the High Energy.
Andrei Nomerotski 1 Andrei Nomerotski, University of Oxford for LCFI collaboration LCWS2008, 17 November 2008 Column Parallel CCD and Raw Charge Storage.
Further improvement of the TC performances Marie GELIN on behalf of IPHC - Strasbourg and IRFU – Saclay Investigation of a new substrate (High Resistivity)
Advanced Monolithic Active Pixel Sensors with full CMOS capability for tracking, vertexing and calorimetry Marcel Stanitzki STFC-Rutherford Appleton Laboratory.
1 First large DEPFET pixel modules for the Belle II Pixel Detector Felix Müller Max-Planck-Institut für Physik DPG-Frühjahrstagung der Teilchenphysik,
Andrei Nomerotski 1 Andrei Nomerotski, University of Oxford Ringberg Workshop, 8 April 2008 Pixels with Internal Storage: ISIS by LCFI.
Nonvolatile memories:
Testsystems PXD6 - testing plans overview - by Jelena NINKOVIC Hybrid Boards for PXD6 - by Christian KOFFMANE Source measurements on DEPFET matrices using.
Fully Depleted Low Power CMOS Detectors
for the SPiDeR collaboration (slides from M. Stanitski, Pixel2010)
10-12 April 2013, INFN-LNF, Frascati, Italy
 Silicon Vertex Detector Upgrade for the Belle II Experiment
L. Rattia for the VIPIX collaboration
The Silicon-on-Sapphire Technology:
X-ray Correlation Spectroscopy: the VIPIC 3D-IC Project
CMOS pixel sensors & PLUME operation principles
First Testbeam results
WP microelectronics and interconnections
Rita De Masi IPHC-Strasbourg on behalf of the IPHC-IRFU collaboration
Lars Reuen, 7th Conference on Position Sensitive Devices, Liverpool
Prochaines Etapes des Capteurs CMOS Christine Hu-Guo (IPHC)
SVT detector electronics
Yasuhiro Sugimoto KEK 17 R&D status of FPCCD VTX Yasuhiro Sugimoto KEK 17
R&D of CMOS pixel Shandong University
3D electronic activities at IN2P3
Presentation transcript:

H.-G. Moser Halbleiterlabor der Max-Planck- Institute für Physik und extraterrestrische Physik VIPS LP09, Hamburg August 18, R&D on monolithic and vertically integrated pixel sensors Pixel detector R&D objectives: High precision detectors in hostile environment -High intrinsic resolution -Low multiple scattering (low mass) -Close to the beam (background, radiation damage) This turns into following technical requirements: -High granularity (resolution, occupancy) -High readout speed (complex processing) -Thin sensors (but keep high S/N) -Low power (0-mass cooling) -High fill factor (low mass) -Add functionalities (calibration, 0-suppression, clustering) -Radiation hardness Of course: large signal, low noise, stable operation And keep them affordable!

H.-G. Moser Halbleiterlabor der Max-Planck- Institute für Physik und extraterrestrische Physik VIPS LP09, Hamburg August 18, State of the art: hybrid pixles Face to face interconnection: ASIC - Sensor Pitch: 50  m High granularity (resolution, occupancy) bump bonding limits pitch to O(50 µm) Pixel area µm² (Area for CMOS 0.25 µm) High readout speed (complex processing) Yes! Thin sensors (but keep high S/N) No (250 µm Sensor + ASIC + interconnect) Low power (0-mass cooling) No: liquid cooling needed High fill factor (low mass) No: 71% (ATLAS) Add functionalities (calibration, 0- suppression, clustering) ok, especially going to even smaller DSM Radiation hardness Yes (till n/cm²)

H.-G. Moser Halbleiterlabor der Max-Planck- Institute für Physik und extraterrestrische Physik VIPS LP09, Hamburg August 18, State of the art: CCDs  Standard Product  Used in SLD  R&D at RAL (ILC) Column parallel readout T ~ n x m T ~ n n m High granularity (resolution, occupancy) Yes High readout speed (complex processing) No: frame readout O(10 µs) Thin sensors (but keep high S/N) Yes, but signal small anyway Low power (0-mass cooling) Yes (low temp. operation needed?) High fill factor (low mass) Tiling needed Add functionalities (calibration, 0-suppression, clustering) No (only in readout ASIC) Radiation hardness marginal (trapping)

H.-G. Moser Halbleiterlabor der Max-Planck- Institute für Physik und extraterrestrische Physik VIPS LP09, Hamburg August 18, State of the art: DEPFETs FET on fully depleted silicon Baseline for Belle II PXD High granularity (resolution, occupancy) Yes High readout speed (complex processing) No: frame readout O(10 µs) Thin sensors (but keep high S/N) Yes, with good S/N Low power (0-mass cooling) Yes High fill factor (low mass) Yes: monolithic wafer scale sensors Add functionalities (calibration, 0-suppression, clustering) No (only in readout ASIC) Radiation hardness ok to 10 Mrad

H.-G. Moser Halbleiterlabor der Max-Planck- Institute für Physik und extraterrestrische Physik VIPS LP09, Hamburg August 18, CMOS Sensors EUDET Telescope: EU Funded (FP6): JRA1 of EUDET MAPS to be used in STAR upgrade Long History of CMOS Sensor R&D by Strasbourg group (IPHC, M. Winter): Mimosa series Further R&D on CMOS Sensors: INFN (SLIM5,deep n-well) RAL Hawaii High granularity (resolution, occupancy) yes (depends on functionality/pixel) High readout speed (complex processing) marginal Thin sensors (but keep high S/N) yes (small signal anyway) Low power (0-mass cooling) yes (depends on speed and complexity) High fill factor (low mass) needs tiling Add functionalities (calibration, 0-suppression, clustering) difficult (only NMOS transistors) Radiation hardness marginal (cc by diffusion)

H.-G. Moser Halbleiterlabor der Max-Planck- Institute für Physik und extraterrestrische Physik VIPS LP09, Hamburg August 18, D Interconnection Basic Problem: How to integrate good sensors and good electronic circuits? 3D Interconnection: Two or more layers (=“tiers”) of thinned semiconductor devices interconnected to form a “monolithic” circuit.  Different layers can be made in different technology (high ohmic, BiCMOS, deep sub-  CMOS, SiGe,…..).  3D is driven by industry:  Reduces R,L and C.  Improves speed.  Reduces interconnect power, x-talk.  Reduces chip size.  Each layer can be optimized individually. Si pixel sensor BiCMOS analogue CMOS digital

H.-G. Moser Halbleiterlabor der Max-Planck- Institute für Physik und extraterrestrische Physik VIPS LP09, Hamburg August 18, Basics High density interconnect: SLID, DBI, ….. Pitches down to few µm Through silicon vias: electrical connection between two tiers and/or to outside deep anisotropic etching, aspect ratio 20:1 => < 50 µm wafer thickness

H.-G. Moser Halbleiterlabor der Max-Planck- Institute für Physik und extraterrestrische Physik VIPS LP09, Hamburg August 18, Intense R&D by industry Different technologies being pursued: eutectic bonding (SLID) direct bond interconnect (DBI) copper-copper bonding …… vias first vias last (before or after CMOS process) etching, laser drilling….. No clear winner yet Find optimal technology for specific purpose First devices in production now (CMOS optical sensors for mobile phones) Large volume production imminent optical CMOS sensors memory chips processor – memory stacking ultrafast, low power processors

H.-G. Moser Halbleiterlabor der Max-Planck- Institute für Physik und extraterrestrische Physik VIPS LP09, Hamburg August 18, HEP applications ‘hybrid pixel detecotors’ starting from classical hybrid pixels detector (a) add backside connectivity for higher fill factor (b) Multi tier ROIC for more functionality (c) high density interconnect to senor for smaller pitch, Reduced cost

H.-G. Moser Halbleiterlabor der Max-Planck- Institute für Physik und extraterrestrische Physik VIPS LP09, Hamburg August 18, Advantages even for single layer Make use of smaller feature size (gain space) -> move periphery in between pixels (can keep double column logic) -> backside contacts with vias possible -> no cantilever needed, 4-side abuttable Periphery, column logic, services Pixel area Conventional Layout 3D Layout

H.-G. Moser Halbleiterlabor der Max-Planck- Institute für Physik und extraterrestrische Physik VIPS LP09, Hamburg August 18, HEP applications CMOS sensors Digital section Analog section Deep N-well sensing electrode P-well N-well NMOS PMOS P-type epilayer or substrate 2D CMOS technology Digital section Deep N-well sensing electrode Analog section e 1 st tier Starting from (advanced) MAPS PMOSFET in n-well acts as parasitic charge collection anode Reduced CCE Transfer most (if not all) of the PMOSFETs to 2nd tier High CCE More functionality

H.-G. Moser Halbleiterlabor der Max-Planck- Institute für Physik und extraterrestrische Physik VIPS LP09, Hamburg August 18, Furthermore Many other technological approaches possible Other technologies  MAPS on high resistivity (depletable) epi layer (large S/N, rad hardness)  SOI sensors (see talk by Junji Haba)  Combination of …. Other applications (not necessarily HEP)  X-ray imagers: large memory for fast burst mode (XFEL) 4-side abuttable (large area without dead space)  Intelligent SiPMs single photon & single pixel resolution

H.-G. Moser Halbleiterlabor der Max-Planck- Institute für Physik und extraterrestrische Physik VIPS LP09, Hamburg August 18, Summary: R&D areas a) 3D technology improving CMOS MAPS sensors better CCE, full CMOS, more functionality, depleted substrate b) 3D multi tier ASICs for hybrid pixel detectors more functionality, smaller pixel size c) Improved interconnection alternative to bump bonding, backside contactivity, 4-side buttable However, R&D and prototyping turns out to be very expensive The basic problem is that always at some stage wafer level processing is required. This excludes MPW runs. Solution: create collaborations & networks to organize access to industry overcoming this obstacle Example; Fermilab 3D-IC (see talk be Valerio)