Support Vector Machine & Its Applications. Overview Intro. to Support Vector Machines (SVM) Properties of SVM Applications  Gene Expression Data Classification.

Slides:



Advertisements
Similar presentations
Support Vector Machine & Its Applications
Advertisements

Introduction to Support Vector Machines (SVM)
Lecture 9 Support Vector Machines
ECG Signal processing (2)
Image classification Given the bag-of-features representations of images from different classes, how do we learn a model for distinguishing them?
Support Vector Machine & Its Applications Abhishek Sharma Dept. of EEE BIT Mesra Aug 16, 2010 Course: Neural Network Professor: Dr. B.M. Karan Semester.
Support Vector Machine & Its Applications Mingyue Tan The University of British Columbia Nov 26, 2004 A portion (1/3) of the slides are taken from Prof.
SVM - Support Vector Machines A new classification method for both linear and nonlinear data It uses a nonlinear mapping to transform the original training.
CSE & CSE Multimedia Processing Lecture 09 Pattern Classifier and Evaluation for Multimedia Applications Spring 2009 New Mexico Tech.
An Introduction of Support Vector Machine

An Introduction of Support Vector Machine
Support Vector Machines
SVM—Support Vector Machines
Machine learning continued Image source:
LOGO Classification IV Lecturer: Dr. Bo Yuan
Discriminative and generative methods for bags of features
1 Machine Learning Support Vector Machines. 2 Perceptron Revisited: Linear Separators Binary classification can be viewed as the task of separating classes.
Support Vector Machine
Image classification Given the bag-of-features representations of images from different classes, how do we learn a model for distinguishing them?
Support Vector Machines (SVMs) Chapter 5 (Duda et al.)
University of Texas at Austin Machine Learning Group Department of Computer Sciences University of Texas at Austin Support Vector Machines.
1 Classification: Definition Given a collection of records (training set ) Each record contains a set of attributes, one of the attributes is the class.
Support Vector Machines Kernel Machines
Support Vector Machines and Kernel Methods
Support Vector Machines
Support Vector Machines
Classification III Tamara Berg CS Artificial Intelligence Many slides throughout the course adapted from Svetlana Lazebnik, Dan Klein, Stuart Russell,
Support Vector Machine & Image Classification Applications
Support Vector Machine (SVM) Based on Nello Cristianini presentation
1 SUPPORT VECTOR MACHINES İsmail GÜNEŞ. 2 What is SVM? A new generation learning system. A new generation learning system. Based on recent advances in.
INTRODUCTION TO ARTIFICIAL INTELLIGENCE Massimo Poesio LECTURE: Support Vector Machines.
计算机学院 计算感知 Support Vector Machines. 2 University of Texas at Austin Machine Learning Group 计算感知 计算机学院 Perceptron Revisited: Linear Separators Binary classification.
Statistical Classification Methods
SVM Support Vector Machines Presented by: Anas Assiri Supervisor Prof. Dr. Mohamed Batouche.
Support Vector Machine PNU Artificial Intelligence Lab. Kim, Minho.
Classification Slides from Heng Ji Classification Define classes/categories Define classes/categories Label text Label text Extract features Extract.
Machine Learning in Ad-hoc IR. Machine Learning for ad hoc IR We’ve looked at methods for ranking documents in IR using factors like –Cosine similarity,
Support Vector Machines Reading: Ben-Hur and Weston, “A User’s Guide to Support Vector Machines” (linked from class web page)
Classifiers Given a feature representation for images, how do we learn a model for distinguishing features from different classes? Zebra Non-zebra Decision.
1 CMSC 671 Fall 2010 Class #24 – Wednesday, November 24.
1 Support Vector Machines Chapter Nov 23rd, 2001Copyright © 2001, 2003, Andrew W. Moore Support Vector Machines Andrew W. Moore Professor School.
CISC667, F05, Lec22, Liao1 CISC 667 Intro to Bioinformatics (Fall 2005) Support Vector Machines I.
CS 478 – Tools for Machine Learning and Data Mining SVM.
Support Vector Machine & Its Applications Mingyue Tan The University of British Columbia Nov 26, 2004 A portion (1/3) of the slides are taken from Prof.
CS 1699: Intro to Computer Vision Support Vector Machines Prof. Adriana Kovashka University of Pittsburgh October 29, 2015.
University of Texas at Austin Machine Learning Group Department of Computer Sciences University of Texas at Austin Support Vector Machines.
Support vector machine LING 572 Fei Xia Week 8: 2/23/2010 TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A 1.
Dec 21, 2006For ICDM Panel on 10 Best Algorithms Support Vector Machines: A Survey Qiang Yang, for ICDM 2006 Panel Partially.
Support Vector Machines. Notation Assume a binary classification problem. –Instances are represented by vector x   n. –Training examples: x = (x 1,
Support Vector Machines Reading: Ben-Hur and Weston, “A User’s Guide to Support Vector Machines” (linked from class web page)
An Introduction of Support Vector Machine In part from of Jinwei Gu.
Roughly overview of Support vector machines Reference: 1.Support vector machines and machine learning on documents. Christopher D. Manning, Prabhakar Raghavan.
A Brief Introduction to Support Vector Machine (SVM) Most slides were from Prof. A. W. Moore, School of Computer Science, Carnegie Mellon University.
Kernels Slides from Andrew Moore and Mingyue Tan.
An Introduction of Support Vector Machine Courtesy of Jinwei Gu.
Copyright 2005 by David Helmbold1 Support Vector Machines (SVMs) References: Cristianini & Shawe-Taylor book; Vapnik’s book; and “A Tutorial on Support.
Support Vector Machine Slides from Andrew Moore and Mingyue Tan.
Support Vector Machines
Static Analysis(6) Support Vector Machines
Support Vector Machines
Support Vector Machines
Machine Learning Week 2.
Support Vector Machines
CS 2750: Machine Learning Support Vector Machines
Support Vector Machines
Support Vector Machine & Its Applications
CS 485: Special Topics in Data Mining Jinze Liu
Support Vector Machine
SVMs for Document Ranking
Presentation transcript:

Support Vector Machine & Its Applications

Overview Intro. to Support Vector Machines (SVM) Properties of SVM Applications  Gene Expression Data Classification  Text Categorization if time permits Discussion

Linear Classifiers f x  y est denotes +1 denotes -1 f(x,w,b) = sign(w x + b) How would you classify this data? w x + b=0 w x + b<0 w x + b>0

Linear Classifiers f x  y est denotes +1 denotes -1 f(x,w,b) = sign(w x + b) How would you classify this data?

Linear Classifiers f x  y est denotes +1 denotes -1 f(x,w,b) = sign(w x + b) How would you classify this data?

Linear Classifiers f x  y est denotes +1 denotes -1 f(x,w,b) = sign(w x + b) Any of these would be fine....but which is best?

Linear Classifiers f x  y est denotes +1 denotes -1 f(x,w,b) = sign(w x + b) How would you classify this data? Misclassified to +1 class

Classifier Margin f x  y est denotes +1 denotes -1 f(x,w,b) = sign(w x + b) Define the margin of a linear classifier as the width that the boundary could be increased by before hitting a datapoint. Classifier Margin f x  y est denotes +1 denotes -1 f(x,w,b) = sign(w x + b) Define the margin of a linear classifier as the width that the boundary could be increased by before hitting a datapoint.

Maximum Margin f x  y est denotes +1 denotes -1 f(x,w,b) = sign(w x + b) The maximum margin linear classifier is the linear classifier with the, um, maximum margin. This is the simplest kind of SVM (Called an LSVM) Linear SVM Support Vectors are those datapoints that the margin pushes up against 1.Maximizing the margin is good according to intuition and PAC theory 2.Implies that only support vectors are important; other training examples are ignorable. 3.Empirically it works very very well.

Linear SVM Mathematically What we know: w. x + + b = +1 w. x - + b = -1 w. (x + -x -) = 2 “Predict Class = +1” zone “Predict Class = -1” zone wx+b=1 wx+b=0 wx+b=-1 X-X- x+x+ M=Margin Width

Linear SVM Mathematically Goal: 1) Correctly classify all training data if y i = +1 if y i = -1 for all i 2) Maximize the Margin same as minimize We can formulate a Quadratic Optimization Problem and solve for w and b Minimize subject to

Solving the Optimization Problem Need to optimize a quadratic function subject to linear constraints. Quadratic optimization problems are a well-known class of mathematical programming problems, and many (rather intricate) algorithms exist for solving them. The solution involves constructing a dual problem where a Lagrange multiplier α i is associated with every constraint in the primary problem: Find w and b such that Φ(w) =½ w T w is minimized; and for all { ( x i,y i )} : y i (w T x i + b) ≥ 1 Find α 1 …α N such that Q( α ) = Σ α i - ½ ΣΣ α i α j y i y j x i T x j is maximized and (1) Σ α i y i = 0 (2) α i ≥ 0 for all α i

The Optimization Problem Solution The solution has the form: Each non-zero α i indicates that corresponding x i is a support vector. Then the classifying function will have the form: Notice that it relies on an inner product between the test point x and the support vectors x i – we will return to this later. Also keep in mind that solving the optimization problem involved computing the inner products x i T x j between all pairs of training points. w = Σ α i y i x i b= y k - w T x k for any x k such that α k  0 f(x) = Σ α i y i x i T x + b

Dataset with noise Hard Margin: So far we require all data points be classified correctly - No training error What if the training set is noisy? - Solution 1: use very powerful kernels denotes +1 denotes -1 OVERFITTING!

Slack variables ξi can be added to allow misclassification of difficult or noisy examples. wx+b=1 wx+b=0 wx+b=-1 77  11 22 Soft Margin Classification What should our quadratic optimization criterion be? Minimize

Hard Margin v.s. Soft Margin The old formulation: The new formulation incorporating slack variables: Parameter C can be viewed as a way to control overfitting. Find w and b such that Φ(w) =½ w T w is minimized and for all { ( x i,y i )} y i (w T x i + b) ≥ 1 Find w and b such that Φ(w) =½ w T w + C Σ ξ i is minimized and for all { ( x i,y i )} y i (w T x i + b) ≥ 1- ξ i and ξ i ≥ 0 for all i

Linear SVMs: Overview The classifier is a separating hyperplane. Most “ important ” training points are support vectors; they define the hyperplane. Quadratic optimization algorithms can identify which training points x i are support vectors with non-zero Lagrangian multipliers α i. Both in the dual formulation of the problem and in the solution training points appear only inside dot products: Find α 1 …α N such that Q(α) =Σα i - ½ΣΣα i α j y i y j x i T x j is maximized and (1) Σα i y i = 0 (2) 0 ≤ α i ≤ C for all α i f(x) = Σ α i y i x i T x + b

Non-linear SVMs Datasets that are linearly separable with some noise work out great: But what are we going to do if the dataset is just too hard? How about … mapping data to a higher-dimensional space: 0 x 0 x 0 x x2x2

Non-linear SVMs: Feature spaces General idea: the original input space can always be mapped to some higher-dimensional feature space where the training set is separable: Φ: x → φ(x)

The “ Kernel Trick ” The linear classifier relies on dot product between vectors K(x i,x j )=x i T x j If every data point is mapped into high-dimensional space via some transformation Φ: x → φ(x), the dot product becomes: K(x i,x j )= φ(x i ) T φ(x j ) A kernel function is some function that corresponds to an inner product in some expanded feature space. Example: 2-dimensional vectors x=[x 1 x 2 ]; let K(x i,x j )=(1 + x i T x j ) 2, Need to show that K(x i,x j )= φ(x i ) T φ(x j ): K(x i,x j )=(1 + x i T x j ) 2, = 1+ x i1 2 x j x i1 x j1 x i2 x j2 + x i2 2 x j x i1 x j1 + 2x i2 x j2 = [1 x i1 2 √2 x i1 x i2 x i2 2 √2x i1 √2x i2 ] T [1 x j1 2 √2 x j1 x j2 x j2 2 √2x j1 √2x j2 ] = φ(x i ) T φ(x j ), where φ(x) = [1 x 1 2 √2 x 1 x 2 x 2 2 √2x 1 √2x 2 ]

What Functions are Kernels? For some functions K(x i,x j ) checking that K(x i,x j )= φ(x i ) T φ(x j ) can be cumbersome. Mercer’s theorem: Every semi-positive definite symmetric function is a kernel Semi-positive definite symmetric functions correspond to a semi-positive definite symmetric Gram matrix: K(x1,x1)K(x1,x1)K(x1,x2)K(x1,x2)K(x1,x3)K(x1,x3) … K(x1,xN)K(x1,xN) K(x2,x1)K(x2,x1)K(x2,x2)K(x2,x2)K(x2,x3)K(x2,x3)K(x2,xN)K(x2,xN) …………… K(xN,x1)K(xN,x1)K(xN,x2)K(xN,x2)K(xN,x3)K(xN,x3) … K(xN,xN)K(xN,xN) K=

Examples of Kernel Functions Linear: K(x i,x j )= x i T x j Polynomial of power p: K(x i,x j )= (1+ x i T x j ) p Gaussian (radial-basis function network): Sigmoid: K(x i,x j )= tanh(β 0 x i T x j + β 1 )

Non-linear SVMs Mathematically Dual problem formulation: The solution is: Optimization techniques for finding α i ’s remain the same! Find α 1 …α N such that Q(α) =Σα i - ½ΣΣα i α j y i y j K(x i, x j ) is maximized and (1) Σα i y i = 0 (2) α i ≥ 0 for all α i f(x) = Σα i y i K(x i, x j )+ b

SVM locates a separating hyperplane in the feature space and classify points in that space It does not need to represent the space explicitly, simply by defining a kernel function The kernel function plays the role of the dot product in the feature space. Nonlinear SVM - Overview

Properties of SVM Flexibility in choosing a similarity function Sparseness of solution when dealing with large data sets - only support vectors are used to specify the separating hyperplane Ability to handle large feature spaces - complexity does not depend on the dimensionality of the feature space Overfitting can be controlled by soft margin approach Nice math property: a simple convex optimization problem which is guaranteed to converge to a single global solution Feature Selection

SVM Applications SVM has been used successfully in many real-world problems - text (and hypertext) categorization - image classification - bioinformatics (Protein classification, Cancer classification) - hand-written character recognition

Application 1: Cancer Classification High Dimensional - p>1000; n<100 Imbalanced - less positive samples Many irrelevant features Noisy Genes Patientsg-1g-2 …… g-p P-1 p-2 ……. p-np-n FEATURE SELECTION In the linear case, w i 2 gives the ranking of dim i SVM is sensitive to noisy (mis-labeled) data 

Weakness of SVM It is sensitive to noise - A relatively small number of mislabeled examples can dramatically decrease the performance It only considers two classes - how to do multi-class classification with SVM? - Answer: 1) with output arity m, learn m SVM’s  SVM 1 learns “Output==1” vs “Output != 1”  SVM 2 learns “Output==2” vs “Output != 2”  :  SVM m learns “Output==m” vs “Output != m” 2)To predict the output for a new input, just predict with each SVM and find out which one puts the prediction the furthest into the positive region.

Application 2: Text Categorization Task: The classification of natural text (or hypertext) documents into a fixed number of predefined categories based on their content. - filtering, web searching, sorting documents by topic, etc.. A document can be assigned to more than one category, so this can be viewed as a series of binary classification problems, one for each category

Representation of Text IR ’ s vector space model (aka bag-of-words representation) A doc is represented by a vector indexed by a pre-fixed set or dictionary of terms Values of an entry can be binary or weights Normalization, stop words, word stems Doc x => φ(x)

Text Categorization using SVM The distance between two documents is φ(x)·φ(z) K(x,z) = 〈 φ(x)·φ(z) is a valid kernel, SVM can be used with K(x,z) for discrimination. Why SVM? -High dimensional input space -Few irrelevant features (dense concept) -Sparse document vectors (sparse instances) -Text categorization problems are linearly separable

Some Issues Choice of kernel - Gaussian or polynomial kernel is default - if ineffective, more elaborate kernels are needed - domain experts can give assistance in formulating appropriate similarity measures Choice of kernel parameters - e.g. σ in Gaussian kernel - σ is the distance between closest points with different classifications - In the absence of reliable criteria, applications rely on the use of a validation set or cross-validation to set such parameters. Optimization criterion – Hard margin v.s. Soft margin - a lengthy series of experiments in which various parameters are tested

SVM Applications Applying to Face Detection REFERENCE  “Training Support Vector Machines: an Application to Face Detection”,Edgar Osuna, MIT  “Support Vector Machines : Training and Applications”,Edgar Osuna,MIT 1.Rescale Image several times 2.Cut 19*19 windows pattern 3.Preprocessing –> light correction, histogram equlization 4. Classify using SVM Using Polynomial Kernel degree of 2

Additional Resources An excellent tutorial on VC-dimension and Support Vector Machines: C.J.C. Burges. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2): , The VC/SRM/SVM Bible: Statistical Learning Theory by Vladimir Vapnik, Wiley- Interscience;

Reference Support Vector Machine Classification of Microarray Gene Expression Data, Michael P. S. Brown William Noble Grundy, David Lin, Nello Cristianini, Charles Sugnet, Manuel Ares, Jr., David Haussler Text categorization with Support Vector Machines: learning with many relevant features T. Joachims, ECML - 98