IP tutorial - #2 Routing KAIST Dept. of CS NC Lab.

Slides:



Advertisements
Similar presentations
13 –Routing Protocols Network Layer4-1. Network Layer4-2 Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 3 rd.
Advertisements

Data Communication and Networks Lecture 11 Internet Routing Algorithms and Protocols December 5, 2002 Joseph Conron Computer Science Department New York.
Routing - I Important concepts: link state based routing, distance vector based routing.
Network Layer-11 CSE401N: Computer Networks Lecture-9 Network Layer & Routing.
1 Dijkstra’s Shortest Path Algorithm Gordon College.
Introduction to Networking Bin Lin TA March 3 rd, 2005 Recital 6.
Routing & IP Routing Protocols
Distance-Vector Routing COS 461: Computer Networks Spring 2010 (MW 3:00-4:20 in COS 105) Michael Freedman
Network Layer4-1 Chapter 4: Network Layer Chapter goals: r understand principles behind network layer services: m routing (path selection) m dealing with.
Network Layer Design Isues Store-and-Forward Packet Switching Services Provided to the Transport Layer The service should be independent of the router.
Katz, Stoica F04 EECS 122: Introduction to Computer Networks Link State and Distance Vector Routing Computer Science Division Department of Electrical.
4-1 Network layer r transport segment from sending to receiving host r on sending side encapsulates segments into datagrams r on rcving side, delivers.
Network Layer4-1 Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley,
4: Network Layer4a-1 Chapter 4: Network Layer Chapter goals: r understand principles behind network layer services: m routing (path selection) m dealing.
Announcement r Project 2 extended to 2/20 midnight r Project 3 available this weekend r Homework 3 available today, will put it online.
Rensselaer Polytechnic Institute © Shivkumar Kalvanaraman & © Biplab Sikdar1 ECSE-4730: Computer Communication Networks (CCN) Network Layer (Routing) Shivkumar.
1 EE 122: Shortest Path Routing Ion Stoica TAs: Junda Liu, DK Moon, David Zats (Materials with thanks to Vern.
4: Network Layer4a-1 14: Intro to Routing Algorithms Last Modified: 7/12/ :17:44 AM.
Announcement r Project 2 due next week! r Homework 3 available soon, will put it online r Recitation tomorrow on Minet and project 2.
EE 122: Intra-domain routing Ion Stoica September 30, 2002 (* this presentation is based on the on-line slides of J. Kurose & K. Rose)
Routing Algorithm March 3 rd, Routing Graph abstraction for routing algorithms: graph nodes are routers graph edges are physical links  link cost:
4: Network Layer 4a-1 14: Intro to Routing Algorithms Last Modified: 8/8/ :41:16 PM.
Computer Networking Intra-Domain Routing, Part I RIP (Routing Information Protocol)
Network Layer Goals: understand principles behind network layer services: –routing (path selection) –dealing with scale –how a router works –advanced topics:
1 Week 6 Routing Concepts. 2 Network Layer Functions transport packet from sending to receiving hosts network layer protocols in every host, router path.
Network Layer r Introduction r Datagram networks r IP: Internet Protocol m Datagram format m IPv4 addressing m ICMP r What’s inside a router r Routing.
Link-state routing  each node knows network topology and cost of each link  quasi-centralized: each router periodically broadcasts costs of attached.
4: Network Layer4a-1 Chapter 4: Network Layer Chapter goals: r understand principles behind network layer services: m routing (path selection) m dealing.
IP routing. Simple Routing Table svr 4% netstat –r n Routing tables DestinationGatewayFlagsRefcntUseInterface UGH00emd UH10lo0.
Network Layer4-1 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside a router r 4.4 IP: Internet.
13 – Routing Algorithms Network Layer.
Network Layer4-1 Distance Vector Algorithm Bellman-Ford Equation (dynamic programming) Define d x (y) := cost of least-cost path from x to y Then d x (y)
The Network Layer & Routing
1 Week 5 Lecture 2 IP Layer. 2 Network layer functions transport packet from sending to receiving hosts transport packet from sending to receiving hosts.
Overview of Internet Routing (I) Fall 2004 CS644 Advanced Topics in Networking Sue B. Moon Division of Computer Science Dept. of EECS KAIST.
Routing 1 Network Layer Network Layer goals:  understand principles behind network layer services:  routing (path selection)  how a router works  instantiation.
Internet Routing r Routing algorithms m Link state m Distance Vector m Hierarchical routing r Routing protocols m RIP m OSPF m BGP.
Transport Layer 3-1 Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley Chapter4_3.
1 CSE524: Lecture 12 Network layer Functions. 2 Where we’re at… Internet architecture and history Internet protocols in practice Application layer Transport.
Switching, Forwarding and Routing. Network layer functions r transport packet from sending to receiving hosts r network layer protocols in every host,
Network Layer4-1 Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley,
Internet and Intranet Protocols and Applications Lecture 9 Internet Routing Algorithms and Protocols March 27, 2002 Joseph Conron Computer Science Department.
4: Network Layer4a-1 Distance Vector Routing Algorithm iterative: r continues until no nodes exchange info. r self-terminating: no “signal” to stop asynchronous:
Network Layer (2). Review Physical layer: move bits between physically connected stations Data link layer: move frames between physically connected stations.
4: Network Layer4-1 Chapter 4: Network Layer Last time: r Chapter Goals m Understand network layer principles and Internet implementation r Started routing.
T. S. Eugene Ngeugeneng at cs.rice.edu Rice University1 COMP/ELEC 429 Introduction to Computer Networks Lecture 10: Intra-domain routing Slides used with.
Network Layer4-1 Chapter 4: Network Layer 4. 1 Introduction 4.2 Virtual circuit and datagram networks 4.3 What’s inside a router 4.4 IP: Internet Protocol.
Network Layer.
CS 5565 Network Architecture and Protocols
Chapter 7 Dynamic Routing
Network Layer Introduction Datagram networks IP: Internet Protocol
Routing: Distance Vector Algorithm
Distance Vector Routing: overview
Network layer functions
Chapter 4 – The Network Layer & Routing
14: Intro to Routing Algorithms
Road Map I. Introduction II. IP Protocols III. Transport Layer
Lecture 10 Computer Networking: A Top Down Approach 6th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 CS3516: These slides are generated from.
CS 3700 Networks and Distributed Systems
ECE453 – Introduction to Computer Networks
CS4470 Computer Networking Protocols
CS 3700 Networks and Distributed Systems
COMP/ELEC 429 Introduction to Computer Networks
Chapter 4: Network Layer
ECSE-4730: Computer Communication Networks (CCN)
Network Layer (contd.) Routing
Chapter 4: Network Layer
Network Layer.
Chapter 4: Network Layer
EE 122: Intra-domain routing: Link State
Presentation transcript:

IP tutorial - #2 Routing KAIST Dept. of CS NC Lab.

Forwarding and Routing Forwarding Refers to datagram transfer Performed by each host or router Uses routing table Involves local decisions Routing Refers to propagation of routing information Performed by routers Inserts/ changes values in routing table Involves global decisions

Routing Graph abstraction for routing algorithms: graph nodes are routers graph edges are physical links link cost: delay, $ cost, or congestion level Goal: determine “good” path (sequence of routers) thru network from source to dest. Routing protocol A E D CB F “ good ” path: typically means minimum cost path other def ’ s possible

Routing Algorithm classification Global or decentralized information? Global: all routers have complete topology, link cost info “link state” algorithms Decentralized: router knows physically- connected neighbors, link costs to neighbors iterative process of computation, exchange of info with neighbors “distance vector” algorithms Static or dynamic? Static: routes change slowly over time Dynamic: routes change more quickly periodic update in response to link cost changes

Distance Vector Routing Assume: Each router knows only address/cost of neighbors Goal: Calculate routing table of next hop information for each destination at each router Idea: Tell neighbors about learned distances to all destinations

DV Algorithm Each router maintains a vector of costs to all destinations as well as routing table Initialize neighbors with known cost, others with infinity Periodically send copy of distance vector to neighbors On reception of a vector, if neighbors path to a destination plus neighbor cost is better, then switch to better path update cost in vector and next hop in routing table Assuming no changes, will converge to shortest paths

Distance Vector Routing Algorithm iterative: continues until no nodes exchange info. self-terminating: no “ signal ” to stop asynchronous: nodes need not exchange info/iterate in lock step! distributed: each node communicates only with directly-attached neighbors Distance Table data structure each node has its own row for each possible destination column for each directly-attached neighbor to node example: in node X, for dest. Y via neighbor Z: D (Y,Z) X distance from X to Y, via Z as next hop c(X,Z) + min {D (Y,w)} Z w = =

Distance Table: example A E D CB D () A B C D A1764A1764 B D5542D5542 E cost to destination via destination D (C,D) E c(E,D) + min {D (C,w)} D w = = 2+2 = 4 D (A,D) E c(E,D) + min {D (A,w)} D w = = 2+3 = 5 D (A,B) E c(E,B) + min {D (A,w)} B w = = 8+6 = 14 loop!

Distance table gives routing table D () A B C D A1764A1764 B D5542D5542 E cost to destination via destination ABCD ABCD A,1 D,5 D,4 Outgoing link to use, cost destination Distance table Routing table

Distance Vector Routing: overview Iterative, asynchronous: each local iteration caused by: local link cost change message from neighbor: its least cost path change from neighbor Distributed: each node notifies neighbors only when its least cost path to any destination changes neighbors then notify their neighbors if necessary wait for (change in local link cost of msg from neighbor) recompute distance table if least cost path to any dest has changed, notify neighbors Each node:

Distance Vector Algorithm: 1 Initialization: 2 for all adjacent nodes v: 3 D (*,v) = infty /* the * operator means "for all rows" */ 4 D (v,v) = c(X,v) 5 for all destinations, y 6 send min D (y,w) to each neighbor /* w over all X's neighbors */ X X X w At all nodes, X:

Distance Vector Algorithm (cont.): 8 loop 9 wait (until I see a link cost change to neighbor V 10 or until I receive update from neighbor V) if (c(X,V) changes by d) 13 /* change cost to all dest's via neighbor v by d */ 14 /* note: d could be positive or negative */ 15 for all destinations y: D (y,V) = D (y,V) + d else if (update received from V wrt destination Y) 18 /* shortest path from V to some Y has changed */ 19 /* V has sent a new value for its min DV(Y,w) */ 20 /* call this received new value is "newval" */ 21 for the single destination y: D (Y,V) = c(X,V) + newval if we have a new min D (Y,w)for any destination Y 24 send new value of min D (Y,w) to all neighbors forever w X X X X X w w

Distance Vector Algorithm: example X Z Y

X Z Y D (Y,Z) X c(X,Z) + min {D (Y,w)} w = = 7+1 = 8 Z D (Z,Y) X c(X,Y) + min {D (Z,w)} w = = 2+1 = 3 Y

Distance Vector: link cost changes Link cost changes: node detects local link cost change updates distance table (line 15) if cost change in least cost path, notify neighbors (lines 23,24) X Z Y 1 algorithm terminates “good news travels fast”

Distance Vector: link cost changes Link cost changes: good news travels fast bad news travels slow - “ count to infinity ” problem! X Z Y 60 algorithm continues on!

Solution: poisoned reverse If Z routes through Y to get to X : Z tells Y its (Z ’ s) distance to X is infinite (so Y won ’ t route to X via Z) X Z Y 60 algorithm terminates

Link State Routing Assume Each router knows only address/cost of neighbors Goal Calculate routing table of next hop information for each destination at each other Idea Tell all routers the topology and have each compute best paths Two phases Topology dissemination (flooding) Shortest-path calculation (Dijkstra’s algorithm)

Why? In DV, routers hide their computation, making it difficult to decide what to use when there are changes With LS, faster convergence and hopefully better stability It is more complex

Flooding Each router maintains link state database and periodically sends link state packets (LSPs) to neighbor Contain (router, neighbors, costs) Each router forwards LSPs not already in its database on all ports except where received Each LSP will travel over the same link at most once in each direction Flooding is fast, and can be made reliable with acknowledgements

A Link-State Routing Algorithm Dijkstra ’ s algorithm net topology, link costs known to all nodes accomplished via “ link state broadcast ” all nodes have same info computes least cost paths from one node ( “ source ” ) to all other nodes gives routing table for that node iterative: after k iterations, know least cost path to k dest. ’ s Notation: c(i,j): link cost from node i to j. cost infinite if not direct neighbors D(v): current value of cost of path from source to destination V p(v): predecessor node along path from source to v, that is next v N: set of nodes whose least cost path definitively known

Dijsktra ’ s Algorithm 1 Initialization: 2 N = {A} 3 for all nodes v 4 if v adjacent to A 5 then D(v) = c(A,v) 6 else D(v) = infinity 7 8 Loop 9 find w not in N such that D(w) is a minimum 10 add w to N 11 update D(v) for all v adjacent to w and not in N: 12 D(v) = min( D(v), D(w) + c(w,v) ) 13 /* new cost to v is either old cost to v or known 14 shortest path cost to w plus cost from w to v */ 15 until all nodes in N

Dijkstra ’ s algorithm: example Step start N A AD ADE ADEB ADEBC ADEBCF D(B),p(B) 2,A D(C),p(C) 5,A 4,D 3,E D(D),p(D) 1,A D(E),p(E) infinity 2,D D(F),p(F) infinity 4,E A E D CB F

Dijkstra ’ s algorithm, discussion Algorithm complexity: n nodes each iteration: need to check all nodes, w, not in N n*(n+1)/2 comparisons: O(n**2) more efficient implementations possible: O(n log n) Oscillations possible: e.g., link cost = amount of carried traffic A D C B 1 1+e e 0 e A D C B 2+e e 1 A D C B 0 2+e 1+e A D C B 2+e 0 e 0 1+e 1 initially … recompute routing … recompute

Comparison of LS and DV algorithms Message complexity LS: with n nodes, E links, O(nE) msgs sent each DV: exchange between neighbors only convergence time varies Speed of Convergence LS: O(n**2) algorithm requires O(nE) msgs may have oscillations DV: convergence time varies may be routing loops count-to-infinity problem Robustness: what happens if router malfunctions? LS: node can advertise incorrect link cost each node computes only its own table DV: DV node can advertise incorrect path cost each node ’ s table used by others error propagate thru network