The Status of Hyperball-J Akio Sasaki Dept. of Phys. Tohoku Univ. 23/9/2011.

Slides:



Advertisements
Similar presentations
Dante Nakazawa with Prof. Juan Collar
Advertisements

GEANT4 Simulations of TIGRESS
Hitoshi Sugimura Kyoto University (For E03 collaboration)
SKS Minus Detectors in detail Tohoku Univ. K.Shirotori.
SUNJI KIM, H. BHANG, M. KIM, K. TSHOO, K. TANIDA, H. FUJIOKA1, Y. SADA1, and H. ASANO1 Seoul National University, 1 Kyoto University Abstract Introduction.
Y. Karadzhov MICE Video Conference Thu April 9 Slide 1 Absolute Time Calibration Method General description of the TOF DAQ setup For the TOF Data Acquisition.
HYP06 Next generation hypernuclear gamma-ray spectrometer: Hyperball-J Koike, Takeshi Tohoku University Introduction Hyperball-J requirements Array geometry.
Gamma Spectroscopy HPT TVAN Technical Training
Radiation Detection and Measurement II IRAD 2731.
RF background, analysis of MTA data & implications for MICE Rikard Sandström, Geneva University MICE Collaboration Meeting – Analysis session, October.
Institute for Safety Research Dávid Légrády IP-EUROTRANS ITC2 Development of a Neutron Time-of-Flight Source at the ELBE Accelerator ELBE Neutron source.
J-PARC でのハイパー核ガンマ線分 光実験に向けた Hyperball-J の建設状 況 東北大理、 KEK 、 セイコー EG&G 、 富士電機システム ズ 白鳥昂太郎、 田村裕和、 小野浩、 笠見勝裕、 小池武志、 竹内孝行、 千賀信幸、 春山富義、 保川幸雄 and the Hyperball-J.
CUORICINO and CUORE Chiara Brofferio Università di Milano – Bicocca and INFN, Sez. di Milano NOW 2004 – Otranto 12 – 17 September 2004 On behalf of the.
Radiation Detection and Measurement, JU, First Semester, (Saed Dababneh). 1 Spectrum if all energy is captured in detector. Allows identification.
K1.8 meeting Report from E05 group Toshiyuki Gogami 26 Dec 2014.
Medium heavy Λ hyper nuclear spectroscopic experiment by the (e,e’K + ) reaction Graduate school of science, Tohoku University Toshiyuki Gogami for HES-HKS.
ハイパー核ガンマ線分光用 磁気スペクトロメータ -SksMinus- 東北大学 大学院理学研究科 白鳥昂太郎 ATAMI.
GERMANIUM GAMMA -RAY DETECTORS BY BAYAN YOUSEF JARADAT Phys.641 Nuclear Physics 1 First Semester 2010/2011 PROF. NIDAL ERSHAIDAT.
Hypernuclear  Spectroscopy Experiments and Waveform Readout of Germanium Detectors H. Tamura Tohoku Univ. 1. Present Status and Hyperball2 2. DAY-1 experiment.
Setup for hypernuclear gamma-ray spectroscopy at J-PARC K.Shirotori Tohoku Univ. Japan for the Hyperball-J collaboration J-PARC E13 hypernuclear  -ray.
Lead Fluoride Calorimeter for Deeply Virtual Compton Scattering in Hall A Alexandre Camsonne Hall A Jefferson Laboratory October 31 st 2008.
1 Geant4 Simulation :MCP PET 4’’(102mm) Scintillator ( LSO) 4’’(102mm) 10mm Glass( Borosilicate) PhotocathodeI(Carbon) Space(Vacuum) MCP(Alumina) Space(Vacumm)
The Electromagnetic Calorimeter – 2005 Operation J. Sowinski for the Collaboration and the Builders Indiana Univ. Michigan State Univ. ANL MIT BNL Penn.
BES-III Workshop Oct.2001,Beijing The BESIII Luminosity Monitor High Energy Physics Group Dept. of Modern Physics,USTC P.O.Box 4 Hefei,
Nov Beam Catcher in KOPIO (H. Mikata Kaon mini worksyop1 Beam Catcher in the KOPIO experiment Hideki Morii (Kyoto Univ.) for the KOPIO.
SksMinus status Hyperball collaboration meeting 2009/3/11 K. Shirotori.
Physics Colloquium Ⅱ Shibata Laboratory OKA, Hiroki Nucleosyntheses studied with a Van de Graaff Accelerator [Contents] 1. Objective.
1 Hypernuclear  -ray spectroscopy via the (K -,  0 ) reaction K. Shirotori Tohoku Univ.
KPS Chonbuk University 2005/10/22 HYUNSU LEE Status of the KIMS dark matter search experiment with CsI(Tl) crystals Hyun Su Lee Seoul National.
Calorimetry for Deeply Virtual Compton Scattering in Hall A Alexandre Camsonne Hall A Jefferson Laboratory Workshop on General Purpose High Resolution.
BACKGROUND REJECTION AND SENSITIVITY FOR NEW GENERATION Ge DETECTORS EXPERIMENTS. Héctor Gómez Maluenda University of Zaragoza (SPAIN)
Medical applications of particle physics General characteristics of detectors (5 th Chapter) ASLI YILDIRIM.
J-PARC でのハイパー核ガンマ線分光実験用 散乱粒子磁気スペクトロメータ検出器の準備 状況 東北大理, 岐阜大教 A, KEK B 白鳥昂太郎, 田村裕和, 鵜養美冬 A, 石元茂 B, 大谷友和, 小池武志, 佐藤美沙子, 千賀信幸, 細見健二, 馬越, 三輪浩司, 山本剛史, 他 Hyperball-J.
Photon Detector with PbWO 4 Crystals and APD Readout APS “April” Meeting in Denver, CO on May 4, 2004 presented by Kenta Shigaki (Hiroshima University,
Master thesis 2006 Shirotori1 Hypernuclear gamma-ray spectroscopy at J-PARC K1.8 beam line 東北大学大学院理学研究科 原子核物理 白鳥昂太郎.
1 Performance and Physics with the CsI(Tl) Array at the Kuo-Sheng Reactor Neutrino Laboratory  Physics with CsI(Tl) detector  Period -2 configuration.
Feb 24, Abnormal Events in HF: TB04, Simulation, and Feb.08 Fermi Testbeam Anthony Moeller (U. Iowa) Shuichi Kunori (U. Maryland) Taylan Yetkin (U.
J-PARC における 4  He の生成と構造の研究 東北大学 大学院理学研究科 白鳥昂太郎 for the Hyperball-J Collaboration.
R&D works on Liquid Xenon Photon Detector for μ  e γ experiment at PSI Satoshi Mihara ICEPP, Univ. of Tokyo Outline Introduction Prototype R&D works Summary.
Hypernuclear gamma-ray spectroscopy at J-PARC K1.8 Beam line Tohoku Univ. K.Shirotori 東北大学 大学院理学研究科 白鳥昂太郎.
SrCl 2 crystal for EC/  + search Presented by J.H. So (KNU)
CNS CVD Diamond S. Michimasa. Properties of diamond Extreme mechanical hardness and extreme high thermal conductivity Broad optical transparency in region.
Positronium intensity measurement preparation SNU Bongho Kim.
Status of ULE-HPGe Experiment for WIMP Search in YangYang
On behalf of TEXONO collaboration
“Performance test of a lead glass
Prompt Gamma Activation Analysis on 76Ge
AGATA Advanced Gamma Tracking Array
Double Beta Decay Experiment with CaMoO4 crystal
Double Beta Decay of 48Ca with CaF2(Eu) - ELEGANT VI -
Status of 100Mo based DBD experiment
Liquid Xenon Detector for the MEG Experiment
Sr-84 0n EC/b+ decay search with SrCl2 crystal
CsI Compton Veto Detector for A low Mass WIMP Experiment
On behalf of the GECAM group
Upgrade of LXe gamma-ray detector in MEG experiment
Neutron Detection with MoNA LISA
The First
Gamma-ray Spectroscopy technique is commonly used in Planetary Exploration Missions.
Preliminary Compton Imaging results of the AGATA C001 detector
Upgrade of LXe gamma-ray detector in MEG experiment
Background Reduction for Quantitative Gamma-ray Imaging with the Electron-Tracking Compton Camera in High Dose Areas May 26th, PS10A-10 T. Mizumoto,
Progress on J-PARC hadron physics in 2016
Status of Neutron flux Analysis in KIMS experiment
SOS Cerenkov Purpose: provide PID for NA Cerenkov efficiency studies
Neutron Beam Test for Measuring Quenching Factor of CsI(Tl) Crystal
HE instrument and in-orbit performance
NKS2 Meeting with Bydzovsky NKS2 Experiment / Analysis Status
MEG II実験 液体キセノン検出器の建設状況
Status Report on MCP PET Simulation
Presentation transcript:

The Status of Hyperball-J Akio Sasaki Dept. of Phys. Tohoku Univ. 23/9/2011

Contents Introduction Details of Hyperball-J Test of the PWO Suppressor Summary

Setup for J-PARC E13 Experiment Tag hypernuclear production Detect hypernuclear  ray Reaction-γ coincidence Fig1. K1.8 beam line at J-PARC K - ( p =1.5 GeV/c )  - ( p ~1.4 GeV/c ) 0 m 5 m Target 2.5T SKS magnet Hyperball-J K1.8 beam line beam particle : K - ( Up to 10 MHz )

Hyperball-J Features  Large photo-peak efficiency  ε~6.1% for 1MeV  -ray with 32 Ge detectors  Radiation-hard Ge detector  Mechanical cooling  Fast background suppressor  PWO counters Operation under high-rate beam Higher photo-peak efficiency Hyperball2  Hyperball-J Crystal temp. : 67 K : 92 K (Liquid N 2 ) Placement of crystals 13 cm A new detector array for hypernucler γ-ray spectroscopy experiment PWO crystal (Scintillation counter) Ge crystal Pulse Tube Refrigerator Target Fig. Lower-half part of Hyperball-J   Target center Spherical Target center Plane

Background Suppressor for γ-ray Detection Anti-coincidence of Ge and PWO  We can suppress these events. Anti-coincidence of Ge and PWO  We can suppress these events. Beam Charged particle (C) High energy charged particle (B) Cascade shower caused by high energy gamma-ray Λ n π0π0  0 from  /K  decay  0  two  rays PWO counter Target Produced hypernucleus Ge detector  -ray (A) Compton scattering of gamma rays e-e-

Differences between PWO and BGO CrystalBGOPWO Effective atomic number 7576 Density[g/cm 3 ] Decay constant [ns]300~6 Light yield [NaI=100]15~1 Low efficiency for low energy γ rays of ~ 100 keV To increase light yield  Cool down (1 p.e.) Typical pulse shape for 661keV gamma ray (b) PWO New Developed (a) BGO Conventional Dead time ~ 1.5μs Dead time ~50ns Cooling power is essential Fast background suppressor # of photo-electron Doped PWO Number of photo electrons for 661-keV  ray Number of photo electrons for 661-keV  ray Temperature (  C) Increase 3%/K Crystal Temperature( ℃ )

Cooling System for PWO Crystals Cu plate for cooling PWO case with PWO crystals installedAssemble PMTs and magnetic shield. Ge1 Coolant(ethylene glycol) IN OUT Copper PMTs

Cooling Test 40 K peak(1460keV) Pedestal Single photo-electron 35.7 p.e p.e. Energy spectrum of gamma ray from 40 K Red : Coolant off (room temp. 12 ℃ ) Blue : Coolant -15 ℃ Light yield increment times Assuming PWO crystals’ light yield increasing by 3%/K. PWO crystal’s temp. corresponds to  5 ℃ when coolant is -15 ℃ ch The number of PWO crystals  ~250 Dense placement of PWO Crystals Direct measurement is difficult

Coolant Temp. no cooling 0 ℃ -15 ℃ All PWO Crystals’ Temp PWO Crystal # Crystal Temp.(Degree Celsius) Ge1 Ge PWO crystals’ temp. coolant -15 ℃ ) ~ -5 ℃ on average. Room temperature : 12 ℃ (tested in winter)  Efficiency for 100keV gamma ray ~ 90% Crystal’s temperature( ℃ ) Estimated efficiency for 100 keV  ray

Assembling Hyperball-J Units ~ 3 m Whole Frame Mount two units

Suppression Test (Using 60 Co source) ・ Ge ADC ・ PWO TDC Trigger : Ge Off-line suppression Ge Top view B-typeE-type 60 Co source PWO crystal Ge crystal 140 mm 200 mm 300 mm 130 mm

Suppression Performance (B-type Unit) Black:w/o suppression Blue : w/ suppression Ge and PWO signals coincidence  Suppress this event Analysis Energy(keV) Ge Top view B-type Ge ADC spectrum

Suppression Performance (E-type Unit) Black:w/o suppression Red : w/ suppression Ge and PWO signals coincidence  Suppress this event Analysis Energy(keV) Ge Top view E-type Ge ADC spectrum

Present Status and Schedules of Hyperball-J We have moved SKS magnet to SksMinus position (E13 configuration). K1.8 Beam line Hyperball-J Long stability test of germanium detectors. Other PWO units under assembling. Schedule June, 2012 Full Univ. Transfer to J-PARC. September, 2012 Ready for beam run.Schedule June, 2012 Full Univ. Transfer to J-PARC. September, 2012 Ready for beam run.

Summary ・ We are preparing for hypernuclear gamma-ray spectroscopy (J-PARC E13) experiment. ・ Performance test of Hyperball-J.  Test for cooling PWO crystals.  Cooling system are working well.  Suppression performance  Worked well for both B- and E-types Other types will be soon assembled and tested.

Back up

Set up (Side view) PWO crystal Ge crystal Solid angle from Ge to PWO is larger in B-type. 60Co source E-typeB-type

Schematic view around Ge crystal PWO crystal Cu plate (for cooling) Insulator Outer metal case Plastic case Ge crystal Dew condensation occurs on the surface of plastic case

Energy spectrum w/o suppression Blue : B-type Red : E-type

Compare B-type and E-type Geometry of PWO counters results in differences of suppression performance. Blue: B-type w/ suppression Red: E-type w/ suppression Normalized by the number of count around 1.33 MeV peak. GeGe GeGe GeGe GeGe GeGe GeGe GeGe GeGe Ge Top view B-typeE-type

B-type Energy(keV) (arbitary unit) Experimental result Simulation

E-type Energy(keV) (arbitary unit) Experimental result Simulation

Energy Spectrum ・実験と同じ検出器配置 ・ PWO の efficiency=1 ・線源位置から1イベントご とに 同時に2本のガンマ線を出 す (1173keV と 1333keV) Simulation Experimen t

Center of target position ~20 degree ~95 degree Theta(rad) Energy(MeV) Cross section(arbitary units) Theta(rad) Energy(MeV) Theta(rad) Compton scattering (0.1 MeV gamma ray )

Center of target position ~20 degree ~95 degree Theta(rad) Energy(MeV) Cross section(arbitary units) Compton scattering (1 MeV gamma ray )

TDC spectrum of PWO counters triggered by Ge detector. TDC Spectrum

Ge detector with mechanical cooler Pulse-tube cooler - Low mechanical vibration Energy resolution(FWHM) 3.1 MeV (LN 2 : 3.1 keV) Time resolution(FWHM) 5.8 MeV (LN 2 : 5.7 ns) Water cooling for refrigerator - enhance cooling power → Crystal temp. : 67 K (LN 2 : 92 K) Slim and compact design - dense placement of detectors Cold head Pulse tube refrigerator Pulse-tube refrigerator Fuji electrics, Co.) (Fuji electrics, Co.) Weight : ~11 kg Cooling power : 2.5 Pulse-tube refrigerator Fuji electrics, Co.) (Fuji electrics, Co.) Weight : ~11 kg Cooling power : 2.5

Improvement of light yield Efficiency for 100-keV  ray ( Doped PWO, -25  C ) : 98 % Light yield is large enough when doped and cooled Light yield with doping and cooling Light yield with doping and cooling Pure PWO → Doped PWO ×2 Room temp. → - 25  C ×4 Doped PWO Number of photo electrons for 661-keV  ray Number of photo electrons for 661-keV  ray Temperature (  C)

Compare with suppression

Case for PWO PWO counters are mounted in cases of 4 types (B,E,C,L) with cooling system Ge detector x 2 PWO counter x 21 coolant Outer case (SUS) Inner support (Acrylic) Copper plate Insulator (Aelo-gelc) Ge detector PWO crystal Assembling all cases in progress Assembling all cases in progress PWO crystal

Differences between PWO and BGO CrystalBGOPWO Effective atomic number 7576 Density[g/cm 3 ] Decay constant [ns]300~6 Light yield [NaI=100]15~1 The lower light yield becomes a problem for low energy γ rays of ~ 100 keV. To increase light yield  Cool down (1 p.e.) Fig : Typical pulse shape for 661keV gamma ray Short dead time Fast background suppressor (b) PWO New Developed (a) BGO Conventional Dead time ~ 1.5μs Dead time ~50ns Cooling power is essential # of photo-electron Doped PWO Number of photo electrons for 661-keV  ray Number of photo electrons for 661-keV  ray Temperature (  C) Increase 3%/K Crystal Temperature( ℃ )

Status of Hyperball-J SKS magnet Hyperball-J

3 stages for detector mount 1. inner 2. mid 3. outer beam direction 1 m Detector units is mounted to stage. Ge detector PWO case Detector geometry

Radiation hardness Radiation hardness E. Hull and R. H. Pehl et al. IUCF Ann. Rep. 143, (1993) Energy MeV of damaged Ge detector Energy MeV of damaged Ge detector Temp. with LN 2 cooling Temp. of Ge crystal (K) Energy resolution (keV) Energy peak of a Ge detector FWHM FWTM w/o damage w damage Use mechanical cooler to obtain lower temp. FWTM FWHM Low energy tail ( Asymmetric shape )

PWO crystals A total of 246 piece 204 have been acquired 4 sizes 25 x 20 x 200t (88 %) 31 x 20 x 200t (71 %) 34 x 20 x 200t (65 %) 40 x 20 x 200t (55 %) PMT Φ33 mm Wrapping scheme Teflon 0.1mm ESR film (3M) mm Black sheet 0.1 mm ■average of 6 crystals (Covered ratio?) Wrapped PWO crystals and PMT

Improvement of light yield Pure PWO Doped PWO Number of photo electrons for 661-keV  ray Number of photo electrons for 661-keV  ray Efficiency for 100-keV  ray ( Doped PWO, -25  C ) : 98 % Light yield is large enough when doped and cooled Light yield with doping and cooling Light yield with doping and cooling Pure PWO → Doped PWO ×2 Room temp. → - 25  C ×4 Temperature (  C)

Design of Hyperball-J Ge detector densely placed → Large solid angle ( 26 % ) Placement of crystals 13 cm Beam Target center Spherical Target center Plane