Tom Peterson -- Cryomodules Integration of cryomodules into the Project X cryo system -- design comments and issues Tom Peterson 3 Jan 2011.

Slides:



Advertisements
Similar presentations
Cryomodule Helium Volumes Tom Peterson, Fermilab AWLC14 13 May 2014.
Advertisements

The HiLumi LHC Design Study (a sub-system of HL-LHC) is co-funded by the European Commission within the Framework Programme 7 Capacities Specific Programme,
Superconducting Spoke Resonator Cavities and Cryomodules
February 17-18, 2010 R&D ERL Roberto Than R&D ERL Cryogenics Roberto Than February 17-18, 2010 CRYOGENICS.
23 October 2005MICE Meeting at RAL1 MICE Tracker Magnets, 4 K Coolers, and Magnet Coupling during a Quench Michael A. Green Lawrence Berkeley Laboratory.
Cryogenic cavern in Asian site Conceptual design of the cryogenic system Layout of the cryogenic plant for site A & B New layout of the cryogenic system.
23 Jan 2007 LASA Cryogenics Global Group 1 ILC Cryomodule piping L. Tavian for the cryogenics global group.
650 MHz Cryomodule Design, 21 Feb 2011Page 1650 MHz Cryomodule Design, 21 Feb 2011Page 1 Project X Cryomodules Tom Peterson and Yuriy Orlov with material.
ESS Cryogenic Distribution System for the Elliptical Linac MBL/HBL - CDS requirements Preliminary Design Review Meeting, 20 May 2015, ESS, Lund, Sweden.
Conceptual Design Study - Cryogenic Requirements How to decide the layout of ILC cryogenic system Conceptual design of cryogenic system Layout of cryogenic.
Cryomodule Helium Vessel Pressure -- a Few Additional Comments Tom Peterson 18 November 2007.
IHEP 1.3 GHz Cryomodule and Cryogenics IHEP Cryogenic group 2nd Workshop of the IHEP 1.3 GHz SRF R&D Project Dec 2 nd, 2009.
CRYOGENICS FOR MLC Cryogenic Piping in the Module Eric Smith External Review of MLC October 03, October 2012Cryogenics for MLC1.
Project X Injector Experiment (PXIE) Sergei Nagaitsev Dec 19, 2011.
Aug 23, 2006 Half Current Option: Impact on Linac Cost Chris Adolphsen With input from Mike Neubauer, Chris Nantista and Tom Peterson.
L. Serio COPING WITH TRANSIENTS L. SERIO CERN, Geneva (Switzerland)
Project X RD&D Plan Cryogenics Arkadiy Klebaner AAC Meeting February 3, 2009.
An Overview of the ILC Cryogenic System Tom Peterson, Fermilab LCFOA at SLAC 1 May 2006.
ILC Cryogenic Systems Reference Design T. Peterson M. Geynisman, A. Klebaner, V. Parma, L. Tavian, J. Theilacker 20 July 2007.
CRYOGENICS FOR MLC Cryogenic Principle of the Module Eric Smith External Review of MLC October 03, October 2012Cryogenics for MLC1.
Cryostat & LHC Tunnel Slava Yakovlev on behalf of the FNAL team: Nikolay Solyak, Tom Peterson, Ivan Gonin, and Timergali Khabibouline The 6 th LHC-CC webex.
LHC Cryostat evaluation Nikolay Solyak Thanks Rama Calaga, Tom Peterson, Slava Yakovlev, Ivan Gonin C11 workshop. FNAL, Oct 27-28, 2008.
Cryogenic scheme, pipes and valves dimensions U.Wagner CERN TE-CRG.
SPL cryomodule specification meeting, CERN 19th October 2010 SPL cryomodule specification: Goals of the meeting SPL cryomodule specification: Goals of.
5 K Shield Study of STF Cryomodule (up-dated) Norihito Ohuchi KEK 2008/4/21-251FNAL-SCRF-Meeting.
PIP-II Cryogenics Arkadiy Klebaner and Jay Theilacker PIP-II Collaboration Meeting 9 November 2015.
325 MHz Spoke Cavity Prototype Cryomodule Project X Front-end Meeting Bob Webber November 3, 2010.
Vacuum tank relief for Super-FRS long multiplet cryostat CrYogenic Department in Common System (CSCY) GSI, Darmstadt Yu Xiang.
Current Leads for Project X Tom Peterson and Tom Nicol With input from Sergey Cheban, Iouri Terechkine, Arkadiy Klebaner, Yuriy Orlov Page 1Current Leads.
650 MHz Helium Vessel Chuck Grimm, Serena Barbanotti, Harry Carter, Mike Foley, Camille Ginsburg, Tom Peterson.
CW Cryomodules for Project X Yuriy Orlov, Tom Nicol, and Tom Peterson Cryomodules for Project X, 14 June 2013Page 1.
Page 1 CRYOMODULE 650 (TESLA Style) Stand Alone Tom Peterson and Yuriy Orlov Collaboration Meeting 25 Jan 2011.
Comments from the SNS Cryostat Design Review February 2010 Tom Peterson, Fermilab 15 February 2010.
Thomas Jefferson National Accelerator Facility Page 1 CEBAF Cryo & SRF Workshop April 3, 2014 Jonathan Creel Electrical / Cryogenics Engineer Cryogenics.
Project X Workshop - Cryogenics1 Project X CRYOGENICS Arkadiy Klebaner.
Low Beta Cryomodule Development at Fermilab Tom Nicol March 2, 2011.
LCLS-II Cryomodule Design
Spoke section of the ESS linac: - the Spoke cryomodules - the cryogenic distribution system P. DUTHIL (CNRS-IN2P3 IPN Orsay / Division Accélérateurs) on.
EXAMPLE OF REDUCED CRYOMODULE HEAT CAPACITY DUE TO HELIUM PRESSURE RETURN LEVELS 0L04 CASE HISTORY.
CW Linac Lattice August, 29 N.Solyak, B.Shteynas.
650 MHz Cryomodule -- Discussions at RRCAT October 2010 Tom Peterson, with Harry Carter, Camille Ginsburg, and Jim Kerby 19 Nov 2010.
ILC : Type IV Cryomodule Design Meeting Main cryogenic issues, L. Tavian, AT-ACR C ryostat issues, V.Parma, AT-CRI CERN, January 2006.
Cryomodule Development Status Prashant Khare, Shailesh Gilankar Pradeep Kush, Rupul Ghosh Abhishek Jain, A. Laxminarayanan, Rajeev Chaube.
Cavities, Cryomodules, and Cryogenics Working Group 2 Summary Report Mark Champion, Sang-ho Kim Project X Collaboration Meeting April 12-14, 2011.
TDR Cryogenics Parameters Tom Peterson 28 September 2011.
Tom Peterson -- Cryomodules 650 MHz cryomodule design status Tom Peterson and Yuriy Orlov 10 Jan 2011.
650 MHz, Beta = 0.9, 11 April 2012Page 1650 MHz, Beta = 0.9, 11 April 2012Page 1 Project X Beta = 0.9, 650 MHz Cavity and Cryomodule Status Tom Peterson.
ESS | Helium Distribution | | Torsten Koettig Linac – Helium distribution 1.
October 7, 2010 HINS Test Cryostat 2 K Conversion Status October 7, 2010.
H. Hayano(KEK), B. Petersen(DESY), T. Peterson(FNAL),
SIS 100 Vacuum chamber Recooler String system Components
Final Design Cryogenic and mechanical configurations
Cryomodules as Part of the ILC Cryogenic System
FRIB Cryogenic Support
Cryogenic Heater Controls in C100 Cryomodules
Progress and Issues with VTS Upgrade
Project X: Cryogenic Segmentation Issues
BDS Cryogenic System RDR Status and EDR Plans
CEPC Cryogenic System Jianqin Zhang, Shaopeng Li
ILC Cryogenic Systems Draft EDR Plan
Horizontal Tests in a Vertical Cryostat
ILC GDE meeting Cryogenics
SC1R Cold Box PDR: Process Requirements
Cryogenic cavern in Asian site
Operation experience of cryogenic system and cryomodules for the superconducting linear accelerator at IUAC, New Delhi. T S Datta ( On behalf of Cryogenics.
ILC Experimental Hall Cryogenics An Overview
ILC Cryogenics -- Technical Design Report Planning
ESS elliptical cryomodule
Cryomodules Challenges for PERLE
Tom Peterson, Fermilab 6 December 2011
Presentation transcript:

Tom Peterson -- Cryomodules Integration of cryomodules into the Project X cryo system -- design comments and issues Tom Peterson 3 Jan 2011

PX Briefing to OHEP Reference design scope PX Briefing to OHEP 2 Warm cw front end (H- ion source, RFQ, MEBT, chopper) 3-GeV cw SCRF linac, 1-mA ave. beam current Transverse beam splitter for 3-GeV experiments 3-8 GeV: pulsed SCRF linac (5% duty cycle) Recycler and MI upgrades Various beam transport lines Pulsed dipole 5% duty cycle

PX Briefing to OHEP 3 Reference design: cw linac Prelim design (preferred) SSR0SSR1SSR2β=0.6β= MHz MeV 650 MHz GeV SectionFreqEnergy (MeV)Cav/mag/CMType SSR0 (  G =0.11) /26/1SSR, solenoid SSR1 (  G =0.22) /18/ 2SSR, solenoid SSR2 (  G =0.4) /24/ 4SSR, solenoid LB 650 (  G =0.61) /24/ 45-cell elliptical, doublet HB 650 (  G =0.9) /34/185-cell elliptical, doublet 180 elliptical cavities From Project X Briefing to DOE/Office of High Energy Physics November 16, 2010, by Sergei Nagaitsev Consider stand-alone cryomodules -- Tom P.

Tom Peterson -- Cryomodules Cryomodule Pipe Sizing Criteria Heat transport from cavity to 2-phase pipe –1 Watt/sq.cm. is a conservative rule for a vertical pipe (less heat flux with horizontal lengths) Two phase pipe size –5 meters/sec vapor “speed limit” over liquid –Not smaller than nozzle from helium vessel Gas return pipe (also serves as the support pipe in TESLA-style CM) –Pressure drop < 10% of total pressure in normal operation –Support structure considerations Loss of vacuum venting P < cold MAWP at cavity –Path includes nozzle from helium vessel, 2-phase pipe, may include gas return pipe, and any external vent lines 4

Tom Peterson -- Cryomodules Air inflow heat flux limit Atmospheric air flowing into a vacuum via a round hole –~23 grams/sec per cm2 hole size Heat deposition by air condensing on cold surface –~470 J/g, so 10.8 kW per cm2 hole size Helium heat input per gram ejected for typical ( bar) pressures –~13 J/g Helium mass flow per air inlet area –~830 grams/sec helium per cm2 hole size 5

Tom Peterson -- CryomodulesProject X CW Cryomodules, Tom Peterson For a 3-inch (76 mm) diameter opening, air flow becomes the limiting factor in heat deposition after a few cryomodules. But for one cryomodule, total cavity surface area determines the flow rate. 6 3-inch port

Tom Peterson -- Cryomodules Current lead design Magnets in sub- atmospheric 2 K helium require conductively cooled current leads. 4 leads at 50 A, 2 leads at 200 A Thermal intercepts at 80 K and 5 K Tom Nicol, Valeri Poloubotko, Sergey Cheban

Tom Peterson -- Cryomodules Heat exchanger design 4.5 K - 2 K heat exchanger for 10 grams/sec (~200 W at 2 K, designed by Tom Peterson) in the TTF feedbox assembly 2 K supply flow precooled by 2 K pumped return flow improves 2 K capacity by ~40%. Heat exchanger must be vertically oriented and higher than the liquid in the cryomodule Arkadiy Klebaner, Sergey Cheban, Ben Hansen working on heat exchanger design for Project X

Tom Peterson -- Cryomodules 650 MHz assumptions 2.0 K helium cooling (~30 mbar) 1.5 uncertainty factor for flow estimation and pipe sizing Cavity MAWP = 2.0 bar warm, 4.0 bar cold Heat loads on following slides 9

Tom Peterson -- Cryomodules 2 K heat loads 10

Tom Peterson -- Cryomodules 5 K heat loads 11

Tom Peterson -- Cryomodules 70 K heat loads 12

Tom Peterson -- Cryomodules 650 MHz cryo schematic (“string” probably one CM)

Tom Peterson -- CryomodulesProject X CW Cryomodules, Tom Peterson 2-pipe 2 Kelvin vapor system 650 MHz cryomodule a modified TESLA-type Project X CW Cryomodules, Tom Nicol, Tom Peterson 14

Tom Peterson -- CryomodulesProject X CW Cryomodules, Tom Peterson 650 MHz 2-phase pipe size 33.6 W per cavity -- note the large pipe needed for even just a few cryomodules in series 15 TTF is 72 mm

Tom Peterson -- CryomodulesProject X CW Cryomodules, Tom Peterson 16 Note: a 3-inch air inlet hole results in a mass flow equivalent to ~ 8 beta= MHz cavities. Checking the feasibility of venting a CM string of cavities with a large 2-phase pipe. Looks OK but still need frequent cross-connects to a larger pipe.

Tom Peterson -- CryomodulesProject X CW Cryomodules, Tom Peterson

Tom Peterson -- Cryomodules Stand-alone CM pipe sizes 18

Tom Peterson -- Cryomodules Further considerations Support structure –Stiffness of pipe if used as support backbone –Or other support structure options Emergency venting scenarios drive pipe sizes and influence segmentation –Cold MAWP may be low for 650 MHz, driving up pipe sizes and/or reducing spacing between relief vent ports –Trade-off of pipe size with vent spacing requires further work –Thermal shield pipe may also require frequent venting 5 K has a large surface area for large heat flux 70 K starts at a high pressure Liquid management length needs further work –May want to subdivide strings for liquid management due to large specific liquid flow rate per cavity 19

Tom Peterson -- Cryomodules Liquid management length The 2 K to 4.5 K heat exchanger needs to be divided (not one large heat exchanger) in order to be a practical size, which means distributing multiple heat exchangers in the tunnel. 2 K to 4.5 K heat exchanger size which fits in the Project X tunnel will be roughly grams/sec (about Watts of 2 K heat) With 650 MHz and 1.3 GHz CW heat loads of nearly 200 W per cryomodule, this implies liquid management lengths of one or two cryomodules as limited by JT heat exchanger practical size limits 20

Tom Peterson -- Cryomodules From “Controlling Cavity Detuning for Project X” by Ruben Carcagno, et. al. SNS –Long term pressure regulation to better than 100 ubar (Fabio Casagrande) Regulates flow and maintains constant heat load using bath heaters Distributes He at 4K with a cold box on each cryomodule CEBAF –25 ubar when everything is ‘quiet’ Also regulates flow and uses heaters to maintain constant load Distributes He at 2K –Transients of up to several 1-2 mbar about once a day Identified a control system problem not a cryogenic problem HoBiCaT (BESSY) –15-30 ubar steady state –Large non-gaussian tails in microphonics distribution ~17  fluctuation every one or two hours Origin not completely understood but cryogenic likely a large component Cornell –Heat leak at dead end pipe in cryo system creates gas bubbles which ‘pop’ about once per second

Tom Peterson -- Cryomodules22 Pressure stability Consider short duration pulses (~ a few seconds or less) for which the vapor and liquid are not in equilibrium. –Treat the vapor volume as a closed volume of ideal gas –Heat or vapor flow change results in a direct change of stored gas –Pressure changes in proportion to net mass flow in or out –Pressure changes inversely with total vapor volume –Using total mass flow, if a TTF cryomodule with TTF-sized pipes and 16 W total heat (dynamic plus static), pressure change due to total heat flow into a closed volume is dP/dt =0.023 mbar/sec SSR0 dP/dt = 0.10 mbar/sec SSR1 dP/dt= 0.14 mbar/sec SSR2 dP/dt = 0.33 mbar/sec 650 MHz CW dP/dt = mbar/sec

Tom Peterson -- Cryomodules23 Pressure stability Consider longer duration pulses (many minutes) for which the 2 K liquid and vapor are always in complete thermal equilibrium. –Liquid volume may become a factor (liquid helps to buffer a step change in heat load due to a significant heat capacity with small temperature change) J/g per mK, so J/g for 0.1 mbar pressure change –The process is the addition of heat or transfer of mass (to or from) a closed 2- phase system –Will study the equilibrium (liquid-vapor phase equilibrium) rate of change of pressure with incremental change of heat and flow Various ratios of liquid and vapor Various rates of heat addition Rate of return to vapor-liquid equilibrium is limited by heat transport through the “chimney” as helium condenses (adding heat) or vaporizes (carrying away heat) –Surface area of liquid is a factor to help damp pressure oscillations

Tom Peterson -- Cryomodules24 Pressure stability -- role of liquid surface Consider a 0.1 mbar step change in pressure due to vapor flow –Corresponding temperature change is 1 mK –So surface temperature of the liquid essentially immediately changes by 0.1 mK and heat transport proceeds as vapor evaporates or condenses. –The nominal maximum of 1.4 W/cm 2 corresponding to liquid head reaches to a depth of 0.7 cm for 0.1 mbar. For greater depth, heat transport with 1 mK delta-T is reduced in proportion to length. For a 5 cm chimney height, this becomes 0.2 W/cm 2 for the 1 mbar pressure change. –Corresponding surface mass flux (23.4 J/g latent heat) is g/s per cm 2. –The TESLA 55 mm chimney (24 cm 2 ) can then buffer a vapor flow rate change of up to 24 x = 0.2 gr/sec with a 0.1 mbar pressure change. For the closed 650 MHz dressed cavity, a 110 mm chimney can buffer a 0.1 mbar pressure change with up to 0.8 gr/sec vapor-liquid exchange rate. For an open 650 MHz dressed cavity, the maximum vapor exchange rate with 0.1 mbar delta-P is about 47 gr/sec. Conclusion: there is a significant pressure stability advantage for the large 2.0 K liquid-vapor surface area.

Tom Peterson -- Cryomodules Conclusions Work on cryomodule requirements and configurations is in progress. CW cryomodule piping requirements may be quite different from TESLA/ILC –325 MHz cryomodule 2-phase pipe sizes are overwhelmingly determined by venting requirements –650 MHz and 1.3 GHz CW liquid management lengths may be only one or a few cryomodules Thermal shield piping sizes may be like TTF or smaller Division of 325 MHz cryomodules into shorter sections for emergency venting looks necessary Division of CW 650 MHz and 1.3 GHz cryomodules into short strings or individual cryomodules for liquid management may be necessary A large liquid-vapor surface area is an advantage for pressure stability – This may be an important consideration if we use SNS and Jlab pressure stability experience to set our expectations for Project X 25

Tom Peterson -- Cryomodules References “Project-X, CW Linac (ICD-2+) Lattice Design,” by Nikolay Solyak (presentation to a Project X meeting, March 16, 2010) “Notes about the Limits of Heat Transport from a TESLA Helium Vessel with a Nearly Closed Saturated Bath of Helium II,” by Tom Peterson, TESLA report #94-18 (June, 1994). "Latest Developments on He II Co-current Two-phase Flow Studies," by B. Rousset, A. Gauthier, L. Grimaud, and R. van Weelderen, in Advances in Cryogenic Engineering, Vol 43B (1997 Cryogenic Engineering Conference). "Optical Investigations of He II Two Phase Flow," by E. di Muoio, et. al., in Advances in Cryogenic Engineering, Vol 47B (2001 Cryogenic Engineering Conference). Dynamic RF heat loads from "CAVITY.dat”, Slava Yakovlev (28 Dec 2010) Current lead heat from "Conduction-cooled 60 A Resistive Current Leads for LHC Dipole Correctors", by A. Ballarino and other studies 26