SMA and JCMT Observations of IRAS 16293-2422 in HCN J=4-3: From Circumbinary Envelope to Circumstellar Disk SMA JCMT Shigehisa Takakuwa 1, Nagayoshi Ohashi.

Slides:



Advertisements
Similar presentations
Searching for disks around high-mass (proto)stars with ALMA R. Cesaroni, H. Zinnecker, M.T. Beltrán, S. Etoka, D. Galli, C. Hummel, N. Kumar, L. Moscadelli,
Advertisements

ATCA millimetre observations of young dusty disks Chris Wright, ARC ARF, Dave Lommen, Leiden University Tyler Bourke, Michael Burton, Annie Hughes,
Intermediate-mass star- forming regions: are they so complex? Maite Beltrán Josep Miquel Girart Robert Estalella Paul T.P. Ho Aina Palau.
The Serpens Star Forming Region in HCO +, HCN, and N 2 H + Michiel R. Hogerheijde Steward Observatory The University of Arizona.
High Resolution Observations in B1-IRS: ammonia, CCS and water masers Claire Chandler, NRAO José F. Gómez, LAEFF-INTA Thomas B. Kuiper, JPL José M. Torrelles,
1)Disks and high-mass star formation: existence and implications 2)The case of G : characteristics 3)Velocity field in G31.41: rotation or expansion?
Ammonia and CCS as diagnostic tools of low-mass protostars Ammonia and CCS as diagnostic tools of low-mass protostars Itziar de Gregorio-Monsalvo (ESO.
From Pre-stellar Cores to Proto-stars: The Initial Conditions of Star Formation PHILIPPE ANDRE DEREK WARD-THOMPSON MARY BARSONY Reported by Fang Xiong,
High resolution (sub)millimetre studies of the chemistry of low-mass protostars Jes Jørgensen (CfA) Fredrik Schöier (Stockholm), Ewine van Dishoeck (Leiden),
A massive disk around the intermediate-mass young star AFGL 490 ? Katharina Schreyer (AIU Jena, Germany) Thomas Henning (MPIA Heidelberg, Germany) Floris.
Low-Mass Star Formation in a Small Group, L1251B Jeong-Eun Lee UCLA.
Portrait of a Forming Massive Protocluster: NGC6334 I(N) Todd Hunter (NRAO/North American ALMA Science Center) Collaborators: Crystal Brogan (NRAO) Ken.
DUSTY04 – Paris ALMA and ISM / Star Formation Stéphane GUILLOTEAU Observatoire de Bordeaux.
SMA Observations of the Herbig Ae star AB Aur Nagayoshi Ohashi (ASIAA) Main Collaborators: S.-Y. Lin 1, J. Lim 2, P. Ho 3, M. Momose 4, M. Fukagawa 5 (1.
1mm observations of Orion-KL Plambeck, PACS team, Friedel, Eisner, Carpenter,...
SMA Observations of the Binary Protostar System in L723 Josep Miquel Girart 1, Ramp Rao 2, Robert Estalella 3 & Josep Mª Masqué 3 1 Institut de Ciències.
EGOs: Massive YSOs in IRDCs Ed Churchwell & Claudia Cyganowski with co-workers: Crystal Brogan, Todd Hunter, Barb Whitney Qizhou Zhang Dense Cores in Dark.
Mini Workshop on Star Formation and Astrochemistry. Barcelona, 2006 November 23 1 Robert Estalella, Aina Palau, Maite Beltrán (UB) Paul T. P. Ho (CfA),
SiO J=5-4 in the HH211 Protostellar Jet Imaged with the SMA Naomi Hirano (ASIAA, Taiwan) (=^_^=) (=^_^=)/ Sheng-yuan Liu 1, Hsien Shang 1, PaulT.P. Ho.
A Molecular Inventory of the L1489 IRS Protoplanetary Disk Michiel R. Hogerheijde Christian Brinch Leiden Observatory Jes K. Joergensen CfA.
The SMA CO(6-5) & 690 GHz Continuum Observations of Arp 220 Satoki Matsushita (ASIAA) D. Iono (CfA), C.-Y. Chou (ASIAA), M. Gurwell (CfA), P.-Y. Hsieh.
Outflow-Envelope Interactions at the Early Stages of Star Formation Héctor G. Arce (AMNH) & Anneila I. Sargent (Caltech) Submillimeter Astronomy: in the.
SMA Observations of HH 212 Chin-Fei Lee Collaborators: (CFA) Paul Ho, Qizhou Zhang, Tyler Bourke, Henrik Beuther (ASIAA) Naomi Hirano, Sheng-Yuan Liu,
ORBITAL MOTIONS IN BINARY AND MULTIPLE PROTOSTARS L. F. Rodríguez (IAUNAM, Morelia) L. Loinard, M. Rodríguez, & P. D’Alessio (IAUNAM, Morelia) S. Curiel,
SMA Observations of High Mass Protostellar Objects (HMPOs) Submm Astronomy in Era of SMA June 15, 2005 Crystal Brogan (U. of Hawaii) Y. Shirley (NRAO),
Structure of circumstellar envelope around AGB and post-AGB stars Dinh-V-Trung Sun Kwok, P.J. Chiu, M.Y. Wang, S. Muller, A. Lo, N. Hirano, M. Mariappan,
Submillimeter Astronomy in the era of the SMA, Cambridge, June 14, 2005 Star Formation and Protostars at High Angular Resolution with the SMA Jes Jørgensen.
Centimeter and Millimeter Observations of Very Young Binary and Multiple Systems -Orbital Motions and Mass Determination -Truncated Protoplanetary Disks.
Complex organic molecules in hot corinos
SiO J=5-4 in the HH211 Protostellar Jet Imaged with the SMA Naomi Hirano (ASIAA, Taiwan) (=^_^=) (=^_^=)/ Sheng-yuan Liu 1, Hsien Shang 1, PaulT.P. Ho.
Star Formation Research Now & With ALMA Debra Shepherd National Radio Astronomy Observatory ALMA Specifications: Today’s (sub)millimeter interferometers.
MALT 90 Millimetre Astronomy Legacy Team 90 GHz survey
Magnetic Fields Near the Young Stellar Object IRAS M. J Claussen (NRAO), A. P. Sarma (E. Kentucky Univ), H.A. Wootten (NRAO), K. B. Marvel (AAS),
Water maser emission in Bok globules Bok Globules Bok globules are small (
The overall systematic trends in the kinematics of massive star forming regions Observations of HC 3 N* in hot cores Víctor M. Rivilla 41st Young European.
Rotating Disks around O-type Young Stars in NGC7538 IRS1 3D Gas Dynamics from Methanol Masers observed with the EVN Ciriaco Goddi.
CARMA Large Area Star-formation SurveY  Completing observations of 5 regions of square arcminutes with 7” angular resolution in the J=1-0 transitions.
ALMA Observations of Keplerian Disks around Protostars: the case of L1527 Nagayoshi Ohashi (NAOJ) NMA With K. Saigo, Y. Aso, S.-W. Yen, S. Takakuwa, S.
Studying Young Stellar Objects with the EVLA
Protostellar jets and outflows — what ALMA can achieve? — 平野 尚美 (Naomi Hirano) 中研院天文所 (ASIAA)
A-Ran Lyo KASI (Korea Astronomy and Space Science Institute) Nagayoshi Ohashi, Charlie Qi, David J. Wilner, and Yu-Nung Su Transitional disk system of.
“The Dusty and Molecular Universe” October 2004
Submillimeter Array CH3OH A Cluster of Highly Collimated and Young Bipolar Outflows Emanating from OMC1 South. Luis A. Zapata 1,2, Luis.
 1987, Whistler: first time I met Malcolm  , post-doc at MPIfR: study of molecular gas in UC HII regions (NH 3, C 34 S, CH 3 CN) with 100m and.
IRAS : A Puzzling High-Mass Protostar Candidate Aina Palau, Robert Estalella, Departament d'Astronomia i Meteorologia, Universitat de Barcelona.
Maite Beltrán Osservatorio Astrofisico di Arcetri The intringuing hot molecular core G
Multiple YSOs in the low-mass star-forming region IRAS CONTENT Introduction Previous work on IRAS Observations Results Discussion.
Early O-Type Stars in the W51-IRS2 Cluster A template to study the most massive (proto)stars Luis Zapata Max Planck Institut für Radioastronomie, GERMANY.
IV. Radiative Transfer Models The radiative transfer modeling procedure is the same procedure used in Shirley et al. (2002) except that the visibility.
1)The environment of star formation 2)Theory: low-mass versus high-mass stars 3)The birthplaces of high-mass stars 4)Evolutionary scheme for high-mass.
Searching for disks around high-mass (proto)stars with ALMA R. Cesaroni, H. Zinnecker, M.T. Beltrán, S. Etoka, D. Galli, C. Hummel, N. Kumar, L. Moscadelli,
Top) The two-sided (red for receding and blue for approaching sides) SiO (J=8- 7) jet observed with the SMA (Lee et al. 2007). Gray image shows the shocked.
Jes Jørgensen (Leiden), Sebastien Maret (CESR,Grenoble)
NGC7538-IRS1: Polarized Dust & Molecular Outflow C. L. H. Hull (UC Berkeley), T. Pillai (Caltech), J.-H. Zhao (CfA), G. Sandell (SOFIA-USRA, NASA), M.
LDN 723: Can molecular emission be used as clock calibrators? Josep Miquel Girart Collaborators: J.M.Masqué,R.Estalella (UB) R.Rao (SMA)
ALMA Cycle 0 Observation of Orion Radio Source I Tomoya Hirota (Mizusawa VLBI observatory, NAOJ) Mikyoung Kim (KVN,KASI) Yasutaka Kurono (ALMA,NAOJ) Mareki.
The Structures on Sub-Jeans Scales, Fragmentation, and the Chemical Properties in Two Extremely Dense Orion Cores Zhiyuan Ren, Di Li (NAOC) and Nicolas.
1)The recipe of (OB) star formation: infall, outflow, rotation  the role of accretion disks 2)OB star formation: observational problems 3)The search for.
SMA and ASTE Observations of Low-mass Protostellar Envelopes in the Submillimeter CS (J = 7-6) and HCN (J = 4-3) Lines Shigehisa Takakuwa 1, Takeshi Kamazaki.
Searching for circumnuclear molecular torus in Seyfert galaxy NGC 4945
Fumitaka Nakamura (National Astronomical Observatory of Japan)
Possible evolutionary sequence for high-mass star formation
Portrait of a Forming Massive Protocluster: NGC6334 I(N)
Deuterium-Bearing Molecules in Dense Cores
OBSERVATIONS OF BINARY PROTOSTARS
High Resolution Submm Observations of Massive Protostars
Signposts of massive star formation
Probing of massive star formation with dense molecular lines
Chasing disks around massive stars with Malcolm
-Orbital Motions and Mass Determination
Presentation transcript:

SMA and JCMT Observations of IRAS in HCN J=4-3: From Circumbinary Envelope to Circumstellar Disk SMA JCMT Shigehisa Takakuwa 1, Nagayoshi Ohashi 2, Tyler L. Bourke 1, Paul T. P. Ho 1, Jes K. Jorgensen 1, Yi-Jehng Kuan 2, Naomi Hirano 2, David J. Wilner 1, Phil C. Myers 1, & Ewine F. Van Dishoeck 3 1: C.f.A., 2: ASIAA, 3: Leiden

Introduction  Comprehensive view from outer extended envelopes (JCMT) to inner disk regions (SMA) uniformly. Combining SMA + JCMT How protostellar envelopes turn into inner ( < 500 AU) disks around the central protostars ? Low-mass protostars and disks form in protostellar envelopes (2000-AU AU) with infalling and rotating motion (Ohashi et al. 1996, 1997a,b). Binary Class 0 Protostars in Oph ---> Infalling and Rotating Envelope (Narayanan et al. 1998) Target: IRAS  Submm lines such as HCN 4-3 can trace higher-temp. (> 43 K) and density (> 10 8 cm -3 ) innermost of envelopes..

IRAS Beam 1.1×0.6 arcsec A:3.8 Jy ~ Mo 1.9×0.9 arcsec NE-SW elongation (P.A degree) B:4.0 Jy ~ Mo 0.9×0.9 arcsec SMA 354 GHz Continuum Source A B 160 AU

Comparison of Total Integrated Intensity Maps in HCN (4-3) JCMT HCN: ~ 3000 AU “ Envelope ” on A SMA HCN: Compact (~ 500 AU) Disklike Structure on A + some filament SMA + JCMT: Compact Structure Embedded in the Extended Envelope. Wide Spatial Range (from 40 to 1 ” )

HCN (4-3) Velocity Structure Extended Envelope with 2 Vel. Grad. + High-Velocity Compact Disk at A with Vel. Grad. NW-SE Gradient in the Circumbi. Env around the bin. axis + NE-SW Gradient perpendicularly NE-SW Gradient in the compact disk at A Note: HCN avoids B.. ~ Parallel to outflow ---> Infall (see Poster 82 by Yeh et al.)

HCN (4-3) Velocity Structure 2 Mean Vel. Map Line Width Map Outer Envelope --> NW-SE Gradient Line Width systematically increase toward Source A Around the Binary --> NE-SW Gradient Perpendicular !! ---> Compact High-vel. Disklike Structure

Comparison of HCN (4-3) Line Profiles SMA --> the compact higher-velocity component at Source A than JCMT SMA+JCMT --> extended lower-velocity components than SMA SMA + JCMT --> Infalling asymmetry with (possible) negative dip

Discussion 1: Origin of the Different Velocity Components Compact High-Vel. Strucrture --> Infalling Disk on 1M (~ 6 x M/yr) Compact, High-Velocity Disklike Structure Extended, Low-Velocity Envelope NE-SW Extended Low-Vel. NE-SW --> Swept-up Dense Gas by the outflow dv P-V Diagram along the NE-SW gradient through Source A

Origin of the Different Velocity Components Compact (~ 500 AU) High-Vel. Component at Source A ---> Infalling Disk on 1M Outer NW-SE gradient ---> Rotating Circumbinary Envelope as already reported NE-SW Extended Low-Vel. NE-SW --> Swept-up Dense Gas by the outflow

Discussion 2: Different Evolution of the Binary Protostars ? Source A ---> compact (~ 500 AU) disklike structure in HCN Source B ---> No clear HCN disklike structure No outflow associated HC 15 N abundance factor 10 lower than A e.g. Nakamura & Li > fragmentation of the first bar after the contraction of the env. ---> difficult to make different age of fragments ---> Subsequent merging of fragments ?? A and B in the different evolutionary stages in the common envelope Theoretically it is difficult to make binary companions at different evolution in the ``common envelope ‘’……

Summary 1. Combined SMA+JCMT image of I16293 in the HCN emission revealed detailed velocity structure in the cirumbinary Env. Rotating Circumbinary Env. + Infalling Disk at Source A + Outflowing Gas Combining Submm Single-Dish + Interferometer is important in low-mass protostellar env., since submm emission (> 60 K) more extended (> 1500 AU) than we thought. 2. Different Evolution of the Protobinary in the common Circumbinary Envelope

Discussion 3: Importance of Combining Single-dish and Interferometric Data cf. SMA obs. of CS (7-6) in L1551 IRS5 ~ only 11 % HCN: Trot ~ 43 K; CS: Trot ~ 66 K Interaction with outflows could maintain high T k extended ? Stellar Radiation only could not explain the extent (Lay et al. 1994) Submm lines are likely to be more extended in the low-mass Env. than we thought It is quite important to combine Single-dish and Interfer. Data; We can study comprehensive Vel. structure at wide spatial range; that is, from Envelope (~ 3000 AU) to Disk (~ 100 AU) ACA in ALMA is critical !! HCN (4-3) Extent > 3000 AU ---> cannot be traced with the SMA (only ~25 % total flux recovered)

Summary of the Results Two Intense 354 GHz Continuum Sources Detected with the SMA; Source A: NE-SW Elongation, 3.8 Jy, 1.9 x 0.9 arcsec Source B: Circular, More Compact 4.0 Jy, 0.9 x 0.9 arcsec JCMT HCN (4-3)---> 3000 AU-scale Circumbinary Envelope SE-NW Vel. Gradient along the Binary Axis as Reported Compact (~ 500 AU) High-Vel. Disklike Structure with SW-NE Vel. Gradient toward Source A No HCN Counterpart associated with B SW-NE Vel. Gradient in the Low-Velocity Env. too Systemactic Increase of Line Width torward Source A High-Vel. Comp. More Significant at High-Resolutions SMA + JCMT HCN (4-3)

15 Jy beam -1 LSR Velocity (km s -1 ) HCN “core” inside C 18 O condensation Toward A (no condensation on B) HCN (4-3) Infalling profile Different from C 18 O (2-1) IRAS mm and Submm Molecular Emission

Make JCMT Visibilities Original JCMT Map Deconvolved with the JCMT beam Primary Beam De-correction Make Visibilities By uvrandom and uvmodel

Comparison of Flux Between SMA and JCMT Excellent match !!

Synthesized Beam SMA Only SMA + JCMT Negative Lobe Significantly Suppressed & Better Sidelobes

SMA Compact High-Vel. toward A, Emission gone around Vsys JCMT NW - SE gradient In the Env. along the binary axis as already reported HCN (4-3) Velocity Structure 1 SMA+JCMT Compact + Extended Emission See next JCMT SMA SMA+JCMT

HCN Line Profiles At Higher Resolution ---> More High-Vel. Comp., Higher-Temp., Deeper Dip (possibly negative) Compare SMA+JCMT and SMA Spectra ---> SMA miss low-velocity (= extended) Components

Discussion CO 2-1 Outflow (Sherry et al. 2005) NEE-SWW overall from Source A High-Vel. Compact Blue-Red HCN at A ~ parallel to outflow High-Vel. Diffuse --> Rim of outflow Low-Vel. NE-SW  Swept-up dense gas by the outflow ? ---> Position-Velocity (P-V) diagram

P-V Diagram along the binary, NW-SE gradient No clear Vel. Gradient --> No Rotation Extended Ambient Gas Compact, High-Velocity Disklike Structure Mixture of High-Vel. Compact, Ambient Gas, & Rotating Circumbinary Envelope

Origin of the Different Velocity Components Compact (~ 500 AU) High-Vel. Component at Source A ---> Accretion Disk on 1M without clear rotation Outer NW-SE gradient ---> Rotating Circumbinary Envelope as already reported NE-SW Extended Low-Vel. NE-SW --> Swept-up Dense Gas by the outflow

Disussion 1: Origin of the Different Velocity Components