Violation of a Bell’s inequality in time with weak measurement SPEC CEA-Saclay IRFU, CEA, Jan. 2011 A.Korotkov University of California, Riverside A. Palacios-Laloy.

Slides:



Advertisements
Similar presentations
Low frequency noise in superconducting qubits
Advertisements

Dr. Daniel F.V. James MS B283, PO Box 1663, Los Alamos NM Invited Correlation-induced spectral (and other) changes Daniel F. V. James, Los Alamos.
Depts. of Applied Physics & Physics Yale University expt. Andreas Wallraff David Schuster Luigi Frunzio Andrew Houck Joe Schreier Hannes Majer Blake Johnson.
Chernogolovka, September 2012 Cavity-coupled strongly correlated nanodevices Gergely Zaránd TU Budapest Experiment: J. Basset, A.Yu. Kasumov, H. Bouchiat,
Superinductor with Tunable Non-Linearity M.E. Gershenson M.T. Bell, I.A. Sadovskyy, L.B. Ioffe, and A.Yu. Kitaev * Department of Physics and Astronomy,
Quantum trajectories for the laboratory: modeling engineered quantum systems Andrew Doherty University of Sydney.
Adiabatic Quantum Computation with Noisy Qubits Mohammad Amin D-Wave Systems Inc., Vancouver, Canada.
Scaling up a Josephson Junction Quantum Computer Basic elements of quantum computer have been demonstrated 4-5 qubit algorithms within reach 8-10 likely.
Long-lived spin coherence in silicon with electrical readout
Superconducting transport  Superconducting model Hamiltonians:  Nambu formalism  Current through a N/S junction  Supercurrent in an atomic contact.
Operating in Charge-Phase Regime, Ideal for Superconducting Qubits M. H. S. Amin D-Wave Systems Inc. THE QUANTUM COMPUTING COMPANY TM D-Wave Systems Inc.,
D-Wave Systems Inc. THE QUANTUM COMPUTING COMPANY TM A.M. Zagoskin (D-Wave Systems and UBC) Tunable coupling of superconducting qubits Quantum Mechanics.
LPS Quantum computing lunchtime seminar Friday Oct. 22, 1999.
Depts. of Applied Physics & Physics Yale University expt. K. Lehnert L. Spietz D. Schuster B. Turek Chalmers University K.Bladh D. Gunnarsson P. Delsing.
Julien Gabelli Bertrand Reulet Non-Gaussian Shot Noise in a Tunnel Junction in the Quantum Regime Laboratoire de Physique des Solides Bât. 510, Université.
Quantenelektronik 1 Application of the impedance measurement technique for demonstration of an adiabatic quantum algorithm. M. Grajcar, Institute for Physical.
Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.
UNIVERSITY OF NOTRE DAME Xiangning Luo EE 698A Department of Electrical Engineering, University of Notre Dame Superconducting Devices for Quantum Computation.
Coherence and decoherence in Josephson junction qubits Yasunobu Nakamura, Fumiki Yoshihara, Khalil Harrabi Antti Niskanen, JawShen Tsai NEC Fundamental.
First year talk Mark Zentile
Markus Büttiker University of Geneva Haifa, Jan. 12, 2007 Mesoscopic Capacitors.
1 0 Fluctuating environment -during free evolution -during driven evolution A -meter AC drive Decoherence of Josephson Qubits : G. Ithier et al.: Decoherence.
Superconducting Qubits Kyle Garton Physics C191 Fall 2009.
Single atom lasing of a dressed flux qubit
Dressed state amplification by a superconducting qubit E. Il‘ichev, Outline Introduction: Qubit-resonator system Parametric amplification Quantum amplifier.
. Random Lasers Gregor Hackenbroich, Carlos Viviescas, F. H.
P. Bertet Quantum Transport Group, Kavli Institute for Nanoscience, TU Delft, Lorentzweg 1, 2628CJ Delft, The Netherlands A. ter Haar A. Lupascu J. Plantenberg.
Paraty - II Quantum Information Workshop 11/09/2009 Fault-Tolerant Computing with Biased-Noise Superconducting Qubits Frederico Brito Collaborators: P.
Quantum systems for information technology, ETHZ
SPEC, CEA Saclay (France),
Quantum-optics experiments in Olomouc Jan Soubusta, Martin Hendrych, Jan Peřina, Jr., Ondřej Haderka Radim Filip, Jaromír Fiurášek, Miloslav Dušek Antonín.
University of Gdańsk, Poland
Controlling the dynamics time scale of a diode laser using filtered optical feedback. A.P.A. FISCHER, Laboratoire de Physique des Lasers, Universite Paris.
Non-linear driving and Entanglement of a quantum bit with a quantum readout Irinel Chiorescu Delft University of Technology.
Quantum measurement and superconducting qubits Yuriy Makhlin (Landau Institute) STMP-09, St. Petersburg 2009, July 3-8.
1 P. Huai, Feb. 18, 2005 Electron PhononPhoton Light-Electron Interaction Semiclassical: Dipole Interaction + Maxwell Equation Quantum: Electron-Photon.
A comparison between Bell's local realism and Leggett-Garg's macrorealism Group Workshop Friedrichshafen, Germany, Sept 13 th 2012 Johannes Kofler.
SQL Related Experiments at the ANU Conor Mow-Lowry, G de Vine, K MacKenzie, B Sheard, Dr D Shaddock, Dr B Buchler, Dr M Gray, Dr PK Lam, Prof. David McClelland.
Meet the transmon and his friends
Low-frequency nuclear spin maser and search for atomic EDM of 129 Xe A. Yoshimi RIKEN SPIN /10/11-16 Trieste, ITALY Collaborator : K. Asahi (Professor,
Alireza Shabani, Jan Roden, Birgitta Whaley
LONG-LIVED QUANTUM MEMORY USING NUCLEAR SPINS A. Sinatra, G. Reinaudi, F. Laloë (ENS, Paris) Laboratoire Kastler Brossel A. Dantan, E. Giacobino, M. Pinard.
Two Level Systems and Kondo-like traps as possible sources of decoherence in superconducting qubits Lara Faoro and Lev Ioffe Rutgers University (USA)
Noise and decoherence in the Josephson Charge Qubits Oleg Astafiev, Yuri Pashkin, Tsuyoshi Yamamoto, Yasunobu Nakamura, Jaw-Shen Tsai RIKEN Frontier Research.
Pablo Barberis Blostein y Marc Bienert
Measuring Quantum Coherence in the Cooper-Pair Box
Non classical correlations of two interacting qubits coupled to independent reservoirs R. Migliore CNR-INFM, Research Unit CNISM of Palermo Dipartimento.
On Decoherence in Solid-State Qubits Josephson charge qubits Classification of noise, relaxation/decoherence Josephson qubits as noise spectrometers Decoherence.
Sources, Memories, Detectors Ryan Camacho, Curtis Broadbent, Michael Pack, Praveen Vudya Setu, Greg Armstrong, Benjamin Dixon and John Howell University.
Introduction to Coherence Spectroscopy Lecture 1 Coherence: “A term that's applied to electromagnetic waves. When they "wiggle" up and down together they.
Quantum dynamics in nano Josephson junctions Equipe cohérence quantique CNRS – Université Joseph Fourier Institut Néel GRENOBLE Wiebke Guichard Olivier.
Per Delsing Chalmers University of Technology Quantum Device Physics Interaction between artificial atoms and microwaves Experiments: IoChun Hoi, Chris.
Jiří Minář Centre for Quantum Technologies
Induced density correlations in a sonic black hole condensate
Superconducting artificial atoms coupled to 1D open space
Circuit QED Experiment
Superconducting Qubits
S. V. Remizov, A. A. Zhukov, D. S. Shapiro, W. V. Pogosov, Yu. E. Lozovik All-Russia Research Institute of Automatics, Moscow Parametrically driven hybrid.
Stabilization of entanglement in qubits- photon systems: Effects of parametric driving and inhomogeneous broadening S. V. Remizov 1,2, A. A. Zhukov 1,3,
Outline Device & setup Initialization and read out
Microwaves for Qubits on Helium
Advanced LIGO Quantum noise everywhere
Decoherence at optimal point: beyond the Bloch equations
Strong Coupling of a Spin Ensemble to a Superconducting Resonator
Superconducting qubit for quantum thermodynamics experiments
A near–quantum-limited Josephson traveling-wave parametric amplifier
Norm Moulton LPS 15 October, 1999
Dynamics and decoherence of a qubit coupled to a two-level system
Jaynes-Cummings Hamiltonian
Dynamics of a superconducting qubit coupled to quantum two-level systems in its environment Robert Johansson (RIKEN, The Institute of Physical and Chemical.
Presentation transcript:

Violation of a Bell’s inequality in time with weak measurement SPEC CEA-Saclay IRFU, CEA, Jan A.Korotkov University of California, Riverside A. Palacios-Laloy F. Nguyen F. Mallet F. Ong P. Bertet D. Vion D. Esteve P. Senat P. Orfila Quantum world Macrorealism

AA ens x x a1a1 a2a2 b2b2 b1b1 x x BB The usual CHSH Bell’s inequality Classical hypothesis = local realism : the measured quantities exist locally already before measurement J.F. Clauser et al., Phys. Rev. Lett. 23 (1969)

AA ens x x a1a1 a2a2 b2b2 b1b1 x x BB The usual CHSH Bell’s inequality Quantum mechanically: Classical hypothesis = local realism : the measured quantities exist locally already before measurement J.F. Clauser et al., Phys. Rev. Lett. 23 (1969) A. Aspect et al., Phys. Rev. Lett. 49 (1982) Violation with polarized photons Violation with superconducting phase qubits: M. Ansmann, Nature 461, (24 Sept.2009)

z  A Bell’s inequality in time Classical assumptions = realism + non invasive measurement = macrorealism A. Leggett & A. Garg., Phys. Rev. Lett. 54 (1985)

z  A Bell’s inequality in time Classical assumptions = local realism + non invasive measurement = macrorealism A. Leggett & A. Garg., Phys. Rev. Lett. 54 (1985) This work (superconducting qubits) + arXiv: , M. E. Goggin et al.arXiv: M. E. Goggin Quantum mechanically: Excess of correlations is due to projective measurement

z  A Bell’s inequality in time with continuous weak measurement Quantum mechanically: t t V t+  t+2  t x x x Macrorealism:and R. Ruskov & A. Korotkov., Phys. Rev. Lett. 96 (2006) Can we test this inequality with an electrical circuit? same excess of correlations due to partial continuous measurement

resonator (  c ) = classical CW detector Cooper pair box = TLS (spin) A.Blais et al., Phys. Rev. A 69, (2004) A. Walraff et al., Nature 431, 162 (2004) J. Koch et al., Phys. Rev. A 76, (2007) YES WE CAN: continuous driving and monitoring of a transmon

resonator (  c ) = classical CW detector Cooper pair box = TLS (spin) A.Blais et al., Phys. Rev. A 69, (2004) A. Walraff et al., Nature 431, 162 (2004) J. Koch et al., Phys. Rev. A 76, (2007) YES WE CAN: continuous driving and monitoring of a transmon

The transmon circuit in the dispersive regime (reflection) cavity pull (readout) AC Stark shift Lamb shift

Readout from cavity pull L.O c frequency  /  c  

AC-stark back-action, dephasing and measurement time L.O c useful dephasing Ideally, discriminate, in

AC-stark back-action, dephasing and measurement time L.O c useful dephasing Other decoherence channels for the CPB:

5mm Implementation Nb antinode Si0 2 /Si chip CPW ~ 6 GHz 80  m C c ~100fF Q~200 2m2m Two J junctions Nb Si0 2 CPW 50  m Extra C 80  m CPB

18mK 4K 300K 600mK 10dB GHz 30dB 20dB DC-8 GHz 50  4-8 GHz G=40dB T N =2.5K VcVc G=56dB LO Fast Digitizer I Q 20dB dB 50MHz MW meas MW drive A(t)‏  (t)‏ COIL Experimental setup

Picture lab Experimental setup

Cavity, Cooper pair box, and coupling characterization MW q MW meas /c/c  

01 12 c Cavity, Cooper pair box, and coupling characterization  /  0 =  /2  MW q MW meas 01 = 5.3GHz  =1.69 rad  = 500MHz n crit = 31 working point c = GHz Q=193

|0> |1> T 1 = 280 ns T   = 365ns T 2 = 221ns relaxation dephasing CPB’s coherence characterization at zero measuring field

Measurement induced decoherence 1) Calibration of photon number from ac-Stark shift MW q MW meas spectro |0> see also D.I. Schuster et al, PRL 64 (2005)

Fit to Bloch solution with MW q MW meas tt |0> 0 to 15 % disagreement with theory for  , photon ( R = 2.5 to 20 MHz, n=0-5) T 1 =306 ns diffusive Rabi? quantum Zeno Measurement induced decoherence 2) Rabi oscillations perturbed by the resonator field

as expected for AC-Stark shift induced dephasing BUT depends on Rabi frequency See also D. Schuster et al., Phys. Rev. Lett. 94 (2005) Photon noise induced dephasing: check experiment

Coherent transient Important remarks about ensemble averaged Rabi oscillations Incoherent steady-state ?? zero signal due to ensemble average - Same signal as that of a driven classical spin submitted to the same noise. - No proof of quantumness - No violation of Bell’s inequality in time here (A. Korotkov and D. Averin, PRB 64 (2001)) Do not ensemble average! Average autocorrelation function or spectrum Spectrum is more practical to subtract noise and make bandwidth corrections

Frequency spectrum measurement : listening to the Rabi tone MW q ON MW meas ON x N~ times

Rabi tone in the frequency spectrum MW q ON MW meas ON x N~ times amplifier white noise (T N =3K) See also Il’ichev PRL 91 (2003)

MW q ON MW meas ON x N~ times amplifier white noise (T N =3K) See also Il’ichev PRL 91 (2003) Rabi tone in the frequency spectrum

 V/2 50% 100% 0% Signal calibration in  z units

Weak to strong measurement transition on a continuously monitored driven qubit Rabi tone in the frequency spectrum

A. Korotkov phenomenological theory (no fitting parameter) Numerical integration of master equation + quantum regression theorem Rabi tone in the frequency spectrum

Spectral density of noise in units of  z MW q ON MW meas ON diffusive Rabi quantum Zeno cavity cutoff Does it violate the Bell’s inequality in time? indep. meas. Rabi tone in the frequency spectrum

Experimental violation of Leggett-Garg’s inequality? S v /(  V/2) 2 Frequency (MHz) =1 photon cavity cutoff corrected measured spectrum theory (no fitting param) inverse Fourier transform

Experimental violation of Leggett-Garg’s inequality by 3.3 sigmas theory (no fitting param) Total error bar = Maximum systematic error (5% due to  V/2 and Q) + statistical error on the measured points of the spectrum

- Understanding of dephasing of Rabi oscillations during measurement - First violation of the Garg-Leggett inequality (weak measurement version) - Rabi spectra : from diffusive Rabi to Quantum Zeno regime. Semi-quantitative understanding Conclusion Quantum world Macrorealism Perspective Quantum feedback need nearly quantum limited linear phase- preserving amplifiers R. Ruskov & A. Korotkov., Phys. Rev. B 66 (2002)

« Qubit team » : A. Palacios-Laloy F. Nguyen M. Kende F. Mallet F. Ong P. Bertet D. Vion D. Esteve P. Senat P. Orfila SPEC CEA-Saclay Thank you ! DV PB FO FN FM DE AP A.Korotkov University of California, Riverside

Introduction: Continuous Measurement of a Driven «Two Level Atom » drive measure info back-action electrical circuit ? Diffusive Rabi oscillations Quantum Zeno effect 1 See J. Gambetta et al., Phys. Rev. A 77, (2008) density matrix conditional to V(t): Quantum trajectory

MW q OFF MW meas CW Resonator characterization

Calibration of photon number from ac-Stark shift MW q MW meas spectro |g> see also D.I. Schuster et al, PRL 64 (2005)

By-product: Low frequency noise in transmon frequency  /  0 =0  /  0 ~0.5 (preliminary) =10 10 min meas

Quantum Zeno Effect Fits : Bloch with Fit with the Bloch solutions R =2.5MHz R =5MHz R =10MHz R =20MHz A. Palacios-Laloy et al., in preparation

Fit with the Bloch solutions as expected for AC-Stark shift induced dephasing BUT depends on Rabi frequency D. Schuster et al., Phys. Rev. Lett. 94, (2005)

Rabi oscillations damping due to measurement time Ithier et al., PRB 72, (2005) FILTERING OF SHOT NOISE

Quantitative understanding of transient Rabi oscillations dephasing due to measurement Rabi oscillations damping due to measurement