Silicon Tracker Data Acquisition and Electronics for the Linear Collider Jean-Francois Genat LPNHE Universite Pierre et Marie Curie CNRS/IN2P3 On behalf.

Slides:



Advertisements
Similar presentations
Electronics for large LAr TPC’s F. Pietropaolo (ICARUS Collaboration) CRYODET Workshop LNGS, March 2006.
Advertisements

J.C Santiard CERN EP-MIC ANALOG AND DIGITAL PROCESSING FOR THE READOUT OF RADIATION DETECTORS  J.C. Santiard, CERN, Geneva, CH
SKIROC New generation readout chip for ECAL M. Bouchel, J. Fleury, C. de La Taille, G. Martin-Chassard, L. Raux, IN2P3/LAL Orsay J. Lecoq, G. Bohner S.
Design and Implementation a 8 bits Pipeline Analog to Digital Converter in The Technology 0.6 μm CMOS Process Eri Prasetyo.
Front-end electronics for Time Projection Chamber I.Konorov Outlook:  TPC requirements  TPC readout options  Options for TPC FE chips  Prototype TPC.
Hervé Lebbolo, François Rossel, Aurore Savoy-Navarro LPNHE-Universités de Paris 6&7 TOPICS: Main parameters of the Si-Envelope Front-End Issues: Long shaping.
SCIPP R&D on Long Shaping- Time Electronics SLAC SiD Workshop October 26-29, 2006 Bruce Schumm.
Large Area, High Speed Photo-detectors Readout Jean-Francois Genat + On behalf and with the help of Herve Grabas +, Samuel Meehan +, Eric Oberla +, Fukun.
SiLC Front-End Electronics LPNHE Paris March 15 th 2004.
Fast sampling for Picosecond timing Jean-François Genat EFI Chicago, Dec th 2007.
Oct, 2000CMS Tracker Electronics1 APV25s1 STATUS Testing started beginning September 1 wafer cut, others left for probing 10 chips mounted on test boards.
L.Royer– Calice DESY – July 2010 Laurent ROYER, Samuel MANEN, Pascal GAY LPC Clermont-Ferrand R&D LPC Clermont-Fd dedicated to the.
L.Royer– TWEPP – 22 Sept Laurent ROYER, Samuel MANEN, Pascal GAY LPC Clermont-Ferrand Signal processing for High Granularity Calorimeter: Amplification,
SPHENIX GEM Tracker R&D at BNL Craig Woody BNL sPHENIX Design Study Meeting September 7, 2011.
Second generation Front-end chip for H-Cal SiPM readout : SPIROC DESY Hamburg – le 13 février 2007 M. Bouchel, F. Dulucq, J. Fleury, C. de La Taille, G.
1 Development of the input circuit for GOSSIP vertex detector in 0.13 μm CMOS technology. Vladimir Gromov, Ruud Kluit, Harry van der Graaf. NIKHEF, Amsterdam,
L.ROYER – TWEPP Oxford – Sept The chip Signal processing for High Granularity Calorimeter (Si-W ILC) L.Royer, J.Bonnard, S.Manen, X.Soumpholphakdy.
Development of the Readout ASIC for Muon Chambers E. Atkin, I. Bulbalkov, A. Voronin, V. Ivanov, P. Ivanov, E. Malankin, D. Normanov, V. Samsonov, V. Shumikhin,
Valerio Re, Massimo Manghisoni Università di Bergamo and INFN, Pavia, Italy Jim Hoff, Abderrezak Mekkaoui, Raymond Yarema Fermi National Accelerator Laboratory.
Front-end Electronics for Silicon Trackers readout Deep Sub-Micron Technology The case of Silicon strips at the ILC Jean-Francois Genat and S. Fougeron,
L.Royer– Calice LLR – Feb Laurent Royer, J. Bonnard, S. Manen, P. Gay LPC Clermont-Ferrand R&D pole MicRhAu dedicated to High.
EUDET ANNUAL MEETING OCT 6th-8th 2008, NIKHEF A 130nm CMOS Digitizer Chip for Silicon Strips readout at the ILC on behalf of W. Da Silva 1, J. David 1,
SPIROC update Felix Sefkow Most slides from Ludovic Raux HCAL main meeting April 18, 2007.
and the EUDET I3-FP6 European Project
LHCb Vertex Detector and Beetle Chip
Fermilab Silicon Strip Readout Chip for BTEV
11 October 2002Paul Dauncey - CDR Introduction1 CDR Introduction and Overview Paul Dauncey Imperial College London.
Jean-François Genat Fast Timing Workshop June 8-10th 2015 FZU Prague Timing Methods with Fast Integrated Technologies 1.
Click to edit Master subtitle style Presented By Mythreyi Nethi HINP16C.
Eleuterio SpiritiILC Vertex Workshop, April On pixel sparsification architecture in 130nm STM technology ILC Vertex Workshop April 2008 Villa.
1 19 th January 2009 M. Mager - L. Musa Charge Readout Chip Development & System Level Considerations.
Front-End electronics for Future Linear Collider calorimeters C. de La Taille IN2P3/LAL Orsay On behalf of the CALICE collaboration
Aurore Savoy-Navarro 1), Albert Comerma 2), E. Deumens 3), Thanh Hung Pham 1), Rachid Sefri 1) 1) LPNHE-Université Pierre et Marie Curie/IN2P3-CNRS, Fr.
FEE for Muon System (Range System) Status & Plans G.Alexeev on behalf of Dubna group Turin, 16 June, 2009.
1 Progress report on the LPSC-Grenoble contribution in micro- electronics (ADC + DAC) J-Y. Hostachy, J. Bouvier, D. Dzahini, L. Galin-Martel, E. Lagorio,
Deep submicron readout chip development on behalf of D. Fougeron, 1 R. Hermel 1, H. Lebbolo 2, R. Sefri, 2 1 LAPP Annecy, 2 LPNHE Paris SiD phone meeting.
A Low-noise Front-end ASIC design based on TOT technique for Read-out of Micro-Pattern Gas Detectors Huaishen Li, Na Wang, Wei Lai, Xiaoshan Jiang 1 State.
Understanding of SKIROC performance T. Frisson (LAL) On behalf of the SiW ECAL team Special thanks to the electronic and DAQ experts: Stéphane Callier,
The design of fast analog channels for the readout of strip detectors in the inner layers of the SuperB SVT 1 INFN Sezione di Pavia I Pavia, Italy.
A 130nm CMOS Evaluation Digitizer Chip for Silicon Strips readout at the ILC on behalf of J. David 2, M. Dhellot 2, D. Fougeron, 1 R. Hermel 1, J-F. Huppert.
STATUS OF SPIROC measurement
M. Manghisoni, L. Ratti Università degli Studi di Pavia INFN Pavia
Valerio Re Università di Bergamo and INFN, Pavia, Italy
DCH FEE STATUS Level 1 Triggered Data Flow FEE Implementation &
V. Tocut, LAL/IN2P3 Orsay H. Lebbolo LPNHE/IN2P3 Paris
A General Purpose Charge Readout Chip for TPC Applications
ECAL front-end electronic status
Electronics of the Silicon Envelope
ASIC PMm2 Pierre BARRILLON, Sylvie BLIN, Selma CONFORTI,
INFN Pavia and University of Bergamo
Application of VATAGP7 ASICs in the Silicon detectors for the central tracker (forward part) S. Khabarov, A. Makankin, N. Zamiatin, ,
R&D activity dedicated to the VFE of the Si-W Ecal
PID meeting SCATS Status on front end design
L. Ratti, M. Manghisoni Università degli Studi di Pavia INFN Pavia
Jean-Francois Genat LPNHE Universite Pierre et Marie Curie CNRS/IN2P3
CALICE COLLABORATION LPC Clermont LAL Orsay Samuel MANEN Julien FLEURY
A First Look J. Pilcher 12-Mar-2004
Electronics for the E-CAL physics prototype
A Low Power Readout ASIC for Time Projection Chambers in 65nm CMOS
Status of n-XYTER read-out chain at GSI
SiD Electronic Concepts
SVT detector electronics
BESIII EMC electronics
SKIROC status Calice meeting – Kobe – 10/05/2007.
SKIROC status CERN – CALICE/EUDET electronic & DAQ meeting – 22/03/2007 Presented by Julien Fleury.
Signal processing for High Granularity Calorimeter
V. Tocut, LAL/IN2P3 Orsay H. Lebbolo LPNHE/IN2P3 Paris
The CMS Tracking Readout and Front End Driver Testing
Presented by T. Suomijärvi
TOF read-out for high resolution timing
Presentation transcript:

Silicon Tracker Data Acquisition and Electronics for the Linear Collider Jean-Francois Genat LPNHE Universite Pierre et Marie Curie CNRS/IN2P3 On behalf of: Philippe Bailly, Jean-Francois Genat, Herve Lebbolo, Olivier Le Dortz, Michele Detournai, and Aurore Savoy-Navarro ECFA Linear Collider Workshop, Durham UK, Sept. 3d 2004

Output signals: very preliminary exercise Exercise performed with 3 external layers of a Silicon tracker: Multiplex as much as possible the output signals from the detector At the digitization stage: highly multiplexed A/D scheme

Context All Silicon Tracker envelope: few 100m 2, a few 10 6 strips Asynchronous events: ~ 1 ms Data taking/pre-processing ~ 200 ms Occupancy: Assume < a few % Jean-Francois Genat, ECFA Linear Collider Workshop, Durham, September 3d 2004

The readout of the Si-tracker - Detector occupancy: Outer central region: Preliminary studies: < 1 % Inner central and forward regions: Preliminary studies: < 10%  Work in progress with Geant - Double & Multiple hit rates: Ambiguities to be estimated: tiling vs long strips - Sparsification/pedestal substraction:  On the detector FE - Pulse height needed: Cluster centroid to improve position resolution to 7–8 µ m  A 10 bit A/D under construction - Timing information Included in the FE design. The principle & possible performances are being studied  Paris test bench - Digital processing for cluster algorithm and fast-track processing algorithm.  Under study while designing FE - Power dissipation studies: Present results do not anticipate a major pb  passive (or light) cooling might be achievable.  FE Power cycling Jean-Francois Genat, ECFA Linear Collider Workshop, Durham, September 3d 2004

Goals: Low noise preamplifiers Long shaping time Time measurement Very low power dissipation Shared ADC/TDC sparsification Power cycling Compact and transparent Choice of DSμE

Front-end processing Time: Disc, Digital delay Storage Compaction Time, Charge Technology: Deep Sub-Micron CMOS UMC 0.18  m Faster and less 1/f noisy alternative: Silicon-Germanium Charge: PA shaper, S&H, Disc Counter ADC (To Trigger) Ch # Readout (From Trigger) Jean-Francois Genat, ECFA Linear Collider Workshop, Durham, September 3d 2004 Charge 1-45 MIP, S/N~40, Time 1ns Calibration Control Amplification + long shaping + storage + time tagging S&H: digitization

Analog Charge Preamp C f = 400 fF CR-RC Shaper Sample and Hold High threshold Low threshold Digital delay Charge Time Hold Input N.B: The time measurement will not be included in the first FE design. It will be first experienced on the Lab test bench. Jean-Francois Genat, ECFA Linear Collider Workshop, Durham, September 3d 2004

Preamp Jean-Francois Genat, ECFA Linear Collider Workshop, Durham, September 3d 2004

Deep Sub-Micron CMOS 0.18  m technology Preamp - Shaper MIP - Gain 8 mV/MIP  W/ch If 100 MIPS needed, just twice preamp power - 4  s conversion time - 10 bits (500 MHz internal clock) - 40  W/ch ADC Timing - Two-threshold discriminator - 60  W Jean-Francois Genat, ECFA Linear Collider Workshop, Durham, September 3d 2004

Performance - Noise: - Preamp + 5  s shaping time, 50 pF detector (no leak, no bias resistor): simulated 690 e- ENC S/N ~ 40 Gain 8mV/MIP - Power: - Preamp + Shaper + timing Preamp: 85  W Shaper: 110  W Timing: 60  V - Shared ADC/TDC ADC: 40  W Total: 295  W/channel Power Switching: If Preamp –Shaper +ADC are running during collisions only: e.g. 1/100 duty cycle and channels, then: Total: x x = 7.7 Watts only ! Jean-Francois Genat, ECFA Linear Collider Workshop, Durham, September 3d 2004

Preamp Linearity Jean-Francois Genat, ECFA Linear Collider Workshop, Durham, September 3d Linearity better than ± 5‰

Shaper response Gain: 8mV/MIP over 45 MIP 5 MIP/step Jean-Francois Genat, ECFA Linear Collider Workshop, Durham, September 3d 2004

Noise Jean-Francois Genat, ECFA Linear Collider Workshop, Durham, September 3d 2004 If 1/f noise shows up at 5  s shaping, consider Silicon-Germanium technology

Preamp Power Switching - Reset the feedback capacitor after switching on and before switching off (Takes 5 us) - Open and close two switches feeding Vdd Vss ( Ron~=100  ) Power is zero when switched off Power offPower onPower offPower on Reset Feedback Capacitor Signal Vdd Vss Jean-Francois Genat, ECFA Linear Collider Workshop, Durham, September 3d 2004

ADC Comparator: Time Walk simulations Jean-Francois Genat, ECFA Linear Collider Workshop, Durham, September 3d Linearity better than ± 5‰ 0

Digital - TDC counter - ADC coding - Memory - Zero suppression and lossless data compression - Calibration management Tools: - Virtual Silicon Library for UMC 0.18  m - I/O pads - VHDL/Verilog - Synthesizer interface (Ambit) - Cadence Silicon Ensemble for digital layout - Merge manually analog and digital cells Help from Erwin Deumens at IMEC (Leuven) Jean-Francois Genat, ECFA Linear Collider Workshop, Durham, September 3d 2004

Layout 16 analog charge channels: - 60  m pitch, - I/O pad, preamp, shaper, sample & hold, comparator - Full prototype chip including digital fits in 2.2 mm 2 1mm 0.75mm Jean-Francois Genat, ECFA Linear Collider Workshop, Durham, September 3d 2004

Silicon UMC 0.18  m Europractice (Leuven) - Standard 5 x 5 mm 2 or 2.2 x 2.2 mm 2 (sharing possible) One full analog channel (including I/O) pad is 60 x750  m 2 =.045 mm 2 only Full 128 channels chip may fit in less than 25 mm 2 (SVX4 in TSMC 0.25 is ~60 mm 2 for 128 channels including analog pipe-lines, ADC, I/O) - Submission at Europractice: next UMC run mid October Jean-Francois Genat, ECFA Linear Collider Workshop, Durham, September 3d 2004

Conclusion Emerging new VLSI technologies: - Silicon Deep Sub Micron CMOS - Silicon-Germanium alternative (incorporate DSM CMOS) allow to implement a highly integrated front end for SiLC that does not degrade the detector resolution, both in time and amplitude within an affordable power and material budget and implement system integration such as data compaction, cluster centroid, fast tracking algorithms Jean-Francois Genat, ECFA Linear Collider Workshop, Durham, September 3d 2004