Larson/Farber Ch. 4 1 Elementary Statistics Larson Farber 4 x = number of on time arrivals x = number of points scored in a game x = number of employees.

Slides:



Advertisements
Similar presentations
HAWKES LEARNING SYSTEMS math courseware specialists Copyright © 2010 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Chapter 7 Probability.
Advertisements

Chapter 3 Probability Distribution. Chapter 3, Part A Probability Distributions n Random Variables n Discrete Probability Distributions n Binomial Probability.
Larson/Farber Ch. 4 Elementary Statistics Larson Farber 4 x = number of on time arrivals x = number of points scored in a game x = number of employees.
More Discrete Probability Distributions
Discrete Probability Distributions
Discrete Probability Distributions
Discrete Probability Distributions
Bluman, Chapter 51. guessing Suppose there is multiple choice quiz on a subject you don’t know anything about…. 15 th Century Russian Literature; Nuclear.
Chapter Discrete Probability Distributions 1 of 63 4 © 2012 Pearson Education, Inc. All rights reserved.
Larson/Farber Ch. 4 Elementary Statistics Larson Farber 4 x = number of on time arrivals x = number of points scored in a game x = number of employees.
1 Random Variables and Discrete probability Distributions Chapter 7.
Introduction Discrete random variables take on only a finite or countable number of values. Three discrete probability distributions serve as models for.
Sullivan – Fundamentals of Statistics – 2 nd Edition – Chapter 11 Section 1 – Slide 1 of 34 Chapter 11 Section 1 Random Variables.
4.1 Probability Distributions
Introduction to Probability and Statistics Thirteenth Edition Chapter 5 Several Useful Discrete Distributions.
Random Variables. A random variable X is a real valued function defined on the sample space, X : S  R. The set { s  S : X ( s )  [ a, b ] is an event}.
Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin Chapter 5 Discrete Random Variables.
McGraw-Hill/IrwinCopyright © 2009 by The McGraw-Hill Companies, Inc. All Rights Reserved. Chapter 5 Discrete Random Variables.
Probability Distributions
1 Since everything is a reflection of our minds, everything can be changed by our minds.
Chapter 4 Discrete Probability Distributions 1 Larson/Farber 4th ed.
Discrete Probability Distributions Elementary Statistics Larson Farber x = number of on time arrivals x = number of points scored in a game x = number.
Binomial Distributions
Definition A random variable is a variable whose value is determined by the outcome of a random experiment/chance situation.
The Normal Distribution
Copyright (C) 2002 Houghton Mifflin Company. All rights reserved. 1 Understandable Statistics Seventh Edition By Brase and Brase Prepared by: Mistah Flynn.
4.2 Binomial Distributions
4.3 More Discrete Probability Distributions NOTES Coach Bridges.
Chapter 5 Discrete Random Variables Probability Distributions
Chapter 4: Discrete Probability Distributions
Chapter 4 Discrete Probability Distributions 1 Larson/Farber 4th ed.
Larson/Farber Ch. 4 PROBABILITY DISTRIBUTIONS Statistics Chapter 6 For Period 3, Mrs Pullo’s class x = number of on time arrivals x = number of points.
Discrete Probability Distributions Chapter 4. § 4.3 More Discrete Probability Distributions.
Discrete Probability Distributions Chapter 4. § 4.3 More Discrete Probability Distributions.
Chapter 5 Discrete Probability Distributions. Overview Introduction O 5-1 Probability Distributions O 5-2 Mean, Variance, Standard Deviation, and Expectation.
Probability Distributions. Constructing a Probability Distribution Definition: Consists of the values a random variable can assume and the corresponding.
Discrete Probability Distributions Chapter 4. § 4.3 More Discrete Probability Distributions.
Copyright (C) 2002 Houghton Mifflin Company. All rights reserved. 1 Understandable Statistics Seventh Edition By Brase and Brase Prepared by: Lynn Smith.
Chapter Discrete Probability Distributions 1 of 63 4  2012 Pearson Education, Inc. All rights reserved.
Chapter Discrete Probability Distributions 1 of 26 4  2012 Pearson Education, Inc. All rights reserved.
CHAPTER 5 Discrete Probability Distributions. Chapter 5 Overview  Introduction  5-1 Probability Distributions  5-2 Mean, Variance, Standard Deviation,
Discrete Probability Distributions Chapter 4. § 4.1 Probability Distributions.
Discrete Probability Distributions
Discrete Distributions
Chapter Five The Binomial Probability Distribution and Related Topics
CHAPTER 6 Random Variables
Probability Distributions
Discrete Probability Distributions
Binomial and Geometric Random Variables
Discrete Probability Distributions
Chapter 4 Discrete Probability Distributions.
Chapter 4 Discrete Probability Distributions.
Discrete Probability Distributions
Discrete Probability Distributions
Discrete Probability Distributions
Elementary Statistics: Picturing The World
Discrete Probability Distributions
4 Chapter Discrete Probability Distributions
Chapter 6: Random Variables
III. More Discrete Probability Distributions
Chapter 4 Discrete Probability Distributions.
Discrete Distributions
Discrete Probability Distributions
Discrete Probability Distributions
Introduction to Probability and Statistics
Discrete Distributions.
Elementary Statistics
Probability Distributions
12/12/ A Binomial Random Variables.
Chapter 8: Binomial and Geometric Distributions
Presentation transcript:

Larson/Farber Ch. 4 1 Elementary Statistics Larson Farber 4 x = number of on time arrivals x = number of points scored in a game x = number of employees reaching sales quota x = number of correct answers 4 Discrete Probability Distributions

Larson/Farber Ch. 4 Probability Distributions Section 4.1

Larson/Farber Ch. 4 3 A random variable, x is the numerical outcome of a probability experiment. x = The number of people in a car. x = The gallons of gas bought in a week. x = The time it takes to drive from home to school x = The number of trips to school you make per week Random Variables

Larson/Farber Ch. 4 4 A random variable is discrete if the number of possible outcomes is finite or countable. Discrete random variables are determined by a count. A random variable is continuous if it can take on any value within an interval. The possible outcomes cannot be listed. Continuous random variables are determined by a measure. Types of Random Variables

Larson/Farber Ch. 4 5 x = The number of people in a car. x = The gallons of gas bought in a week. x = The time it takes to drive from home to school x = The number of trips to school you make per week Identify each random variable as discrete or continuous. Discrete-you count the number of people in a car 0, 1, 2, 3… Possible values can be listed. Continuous-you measure the gallons of gas. You cannot list the possible values. Continuous-you measure the amount of time. The possible values cannot be listed. Discrete-you count the number of trips you make. The possible numbers can be listed. Types of Random Variables

Larson/Farber Ch. 4 6 A discrete probability distribution lists each possible value of the random variable, together with its probability. A survey asks a sample of families how many vehicles each owns. number of vehicles Properties of a probability distribution Each probability must be between 0 and 1, inclusive. The sum of all probabilities is 1. Discrete Probability Distributions

Larson/Farber Ch. 4 7 The height of each bar corresponds to the probability of x. When the width of the bar is 1, the area of each bar corresponds to the probability the value of x will occur Probability Histogram

Larson/Farber Ch. 4 8 Mean, Variance and Standard Deviation The variance of a discrete probability distribution is: The standard deviation of a discrete probability distribution is: The mean of a discrete probability distribution is:

Larson/Farber Ch. 4 9 Mean (Expected Value) Multiply each value by its probability. Add the products The expected value (the mean) is vehicles. Calculate the mean

Larson/Farber Ch Calculate the Variance and Standard Deviation The standard deviation is vehicles. The mean is vehicles. μμμ 2 variance

Larson/Farber Ch. 4 Binomial Distributions Section 4.2

Larson/Farber Ch There are a fixed number of trials. (n) The n trials are independent and repeated under identical conditions Each trial has 2 outcomes, S = Success or F = Failure. The probability of success on a single trial is p. P(S) = p The probability of failure is q. P(F) =q where p + q = 1 The central problem is to find the probability of x successes out of n trials. Where x = 0 or 1 or 2 … n. Binomial Experiments Characteristics of a Binomial Experiment The random variable x is a count of the number of successes in n trials.

Larson/Farber Ch What is the 11th digit after the decimal point for the irrational number e? (a) 2 (b) 7 (c) 4 (d) 5 2. What was the Dow Jones Average on February 27, 1993? (a) 3265 (b) 3174 (c) 3285 (d) How many students from Sri Lanka studied at U.S. universities from ? (a) 2320 (b) 2350 (c) 2360 (d) How many kidney transplants were performed in 1991? (a) 2946 (b) 8972 (c) 9943 (d) How many words are in the American Heritage Dictionary? (a) 60,000 (b) 80,000 (c) 75,000 (d) 83,000 Guess the answers

Larson/Farber Ch Quiz Results Count the number of correct answers. Let the number of correct answers = x. Why is this a binomial experiment? What are the values of n, p and q? What are the possible values for x? The correct answers to the quiz are: 1. d 2. a 3. b 4. c 5. b

Larson/Farber Ch A multiple choice test has 8 questions each of which has 3 choices, one of which is correct. You want to know the probability that you guess exactly 5 questions correctly. Find n, p, q, and x. A doctor tells you that 80% of the time a certain type of surgery is successful. If this surgery is performed 7 times, find the probability exactly 6 surgeries will be successful. Find n, p, q, and x. n = 8p = 1/3q = 2/3x = 5 n = 7p = 0.80 q = 0.20 x = 6 Binomial Experiments

Larson/Farber Ch Find the probability of getting exactly 3 questions correct on the quiz. Write the first 3 correct and the last 2 wrong as SSSFF P(SSSFF)= (.25)(.25)(.25)(.75)(.75) = (.25) 3 (.75) 2 = Since order does not matter, you could get any combination of three correct out of five questions. List these combinations. SSSFF SSFSF SSFFS SFFSS SFSFS FFSSS FSFSS FSSFS SFSSF FSSSF Each of these 10 ways has a probability of P(x = 3) = 10(0.25) 3 (0.75) 2 = 10( )= Binomial Probabilities

Larson/Farber Ch Find the probability of getting exactly 3 questions correct on the quiz. Each of these 10 ways has a probability of P(x = 3) = 10(0.25) 3 (0.75) 2 = 10( )= Combination of n values, choosing x There areways.

Larson/Farber Ch Binomial Probabilities In a binomial experiment, the probability of exactly x successes in n trials is Use the formula to calculate the probability of getting none correct, exactly one, two, three, four correct or all 5 correct on the quiz. P(3) =0.088P(4) =0.015P(5) =0.001

Larson/Farber Ch Binomial Distribution xP(x) Binomial Histogram x

Larson/Farber Ch Probabilities 1. What is the probability of answering either 2 or 4 questions correctly? 2. What is the probability of answering at least 3 questions correctly? 3. What is the probability of answering at least one question correctly? P( x = 2 or x = 4) = = P(x  3) = P( x = 3 or x = 4 x = 5) = = P(x  1) = 1 - P(x = 0) = = xP(x)

Larson/Farber Ch Parameters for a Binomial Experiment Use the binomial formulas to find the mean, variance and standard deviation for the distribution of correct answers on the quiz. Mean: Variance : Standard deviation:

Larson/Farber Ch. 4 More Discrete Probability Distributions Section 4.3

Larson/Farber Ch The Geometric Distribution A marketing study has found that the probability that a person who enters a particular store will make a purchase is The probability the first purchase will be made by the first person who enters the store That is P(1) = 0.30 The probability the first purchase will be made by the second person who enters the store is (0.70) ( 0.30). So P(2) = (0.70) ( 0.30) = The probability the first purchase will be made by the third person who enters the store is (0.70)(0.70)( 0.30). So P(3) = (0.70) (0.70) ( 0.30) = The probability the first purchase will be made by person number x is

Larson/Farber Ch The Geometric Distribution A geometric distribution is a discrete probability distribution of the random variable x that satisfies the following conditions. 1.A trial is repeated until a success occurs 2. The repeated trials are independent of each other. 3. The probability of success p is the same for each trial. The probability that the first success will occur on trial number x is where q = 1- p

Larson/Farber Ch Application A cereal maker places a game piece in its boxes. The probability of winning a prize is one in four. Find the probability you a)Win your first prize on the 4 th purchase b) Win your first prize on your 2 nd or 3 rd purchase c) Do not win your first prize in your first 4 purchases. P(4) = (.75) 3. (.25) = P(2) = (.75) 1 (.25) = and P(3) = (.75) 2 (.25) = So P(2 or 3 ) = = – (P(1) + P(2) +P(3) +P(4)) 1 – ( ) = 1 –.6836 =

Larson/Farber Ch The Poisson Distribution The Poisson distribution is a discrete probability distribution of the random variable x that satisfies the following conditions. 1.The experiment consists of counting the number of times, x, an event occurs in an interval of time, area or space. 2. The probability an event will occur is the same for each interval. 3. The number of occurrences in one interval is independent of the number of occurrences in other intervals. The probability of exactly x occurrences in an interval is e is the irrational number approximately  Is the mean number of occurrences per interval.

Larson/Farber Ch Application It is estimated that sharks kill 10 people each year worldwide. Find the probability a)Three people are killed by sharks this year b) Two or three people are killed by sharks this year P(3)= P(2 or 3) = =