Logical Agents. Inference : Example 1 How many variables? 3 variables A,B,C How many models? 2 3 = 8 models.

Slides:



Advertisements
Similar presentations
Russell and Norvig Chapter 7
Advertisements

Artificial Intelligence Knowledge-based Agents Russell and Norvig, Ch. 6, 7.
Proof methods Proof methods divide into (roughly) two kinds: –Application of inference rules Legitimate (sound) generation of new sentences from old Proof.
Logic in general Logics are formal languages for representing information such that conclusions can be drawn Syntax defines the sentences in the language.
1 Problem Solving CS 331 Dr M M Awais Representational Methods Formal Methods Propositional Logic Predicate Logic.
Logical Agents Chapter 7. Why Do We Need Logic? Problem-solving agents were very inflexible: hard code every possible state. Search is almost always exponential.
Knowledge Representation & Reasoning (Part 1) Propositional Logic chapter 6 Dr Souham Meshoul CAP492.
Logical Agents Chapter 7. Why Do We Need Logic? Problem-solving agents were very inflexible: hard code every possible state. Search is almost always exponential.
Logical Agents Chapter 7.
INTRODUÇÃO AOS SISTEMAS INTELIGENTES Prof. Dr. Celso A.A. Kaestner PPGEE-CP / UTFPR Agosto de 2011.
Logical Agents Chapter 7 Feb 26, Knowledge and Reasoning Knowledge of action outcome enables problem solving –a reflex agent can only find way from.
Rutgers CS440, Fall 2003 Propositional Logic Reading: Ch. 7, AIMA 2 nd Ed. (skip )
Propositional Logic: Logical Agents (Part I) This lecture topic: Propositional Logic (two lectures) Chapter (this lecture, Part I) Chapter 7.5.
Logical Agents Chapter 7 (based on slides from Stuart Russell and Hwee Tou Ng)
Logical Agents Chapter 7. Outline Knowledge-based agents Wumpus world Logic in general - models and entailment Propositional (Boolean) logic Equivalence,
Logical Agents. Knowledge bases Knowledge base = set of sentences in a formal language Declarative approach to building an agent (or other system): 
Logical Agents (NUS) Chapter 7. Outline Knowledge-based agents Wumpus world Logic in general - models and entailment Propositional (Boolean) logic Equivalence,
Propositional Logic: Logical Agents (Part I) This lecture topic: Propositional Logic (two lectures) Chapter (this lecture, Part I) Chapter 7.5.
‘In which we introduce a logic that is sufficent for building knowledge- based agents!’
1 Logical Agents CS 171/271 (Chapter 7) Some text and images in these slides were drawn from Russel & Norvig’s published material.
Logical Agents Chapter 7. Outline Knowledge-based agents Wumpus world Logic in general - models and entailment Propositional (Boolean) logic Equivalence,
Logical Agents Chapter 7. Outline Knowledge-based agents Wumpus world Logic in general - models and entailment Propositional (Boolean) logic Equivalence,
1 Problems in AI Problem Formulation Uninformed Search Heuristic Search Adversarial Search (Multi-agents) Knowledge RepresentationKnowledge Representation.
An Introduction to Artificial Intelligence – CE Chapter 7- Logical Agents Ramin Halavati
S P Vimal, Department of CSIS, BITS, Pilani
Logical Agents Chapter 7. Outline Knowledge-based agents Wumpus world Logic in general - models and entailment Propositional (Boolean) logic Equivalence,
CS 4100 Artificial Intelligence Prof. C. Hafner Class Notes Jan 17, 2012.
Logical Agents Chapter 7. Knowledge bases Knowledge base (KB): set of sentences in a formal language Inference: deriving new sentences from the KB. E.g.:
1 Logical Agents CS 171/271 (Chapter 7) Some text and images in these slides were drawn from Russel & Norvig’s published material.
1 Logical Agents Chapter 7. 2 A simple knowledge-based agent The agent must be able to: –Represent states, actions, etc. –Incorporate new percepts –Update.
Logical Agents Chapter 7. Outline Knowledge-based agents Logic in general Propositional (Boolean) logic Equivalence, validity, satisfiability.
© Copyright 2008 STI INNSBRUCK Intelligent Systems Propositional Logic.
Logical Agents Chapter 7. Outline Knowledge-based agents Wumpus world Logic in general - models and entailment Propositional (Boolean) logic Equivalence,
1 Propositional Logic Limits The expressive power of propositional logic is limited. The assumption is that everything can be expressed by simple facts.
Computing & Information Sciences Kansas State University Wednesday, 13 Sep 2006CIS 490 / 730: Artificial Intelligence Lecture 10 of 42 Wednesday, 13 September.
1 Logical Agents Chapter 7. 2 Logical Agents What are we talking about, “logical?” –Aren’t search-based chess programs logical Yes, but knowledge is used.
Logical Agents Chapter 7. Outline Knowledge-based agents Wumpus world Logic in general - models and entailment Propositional (Boolean) logic Equivalence,
Logical Agents Chapter 7. Outline Knowledge-based agents Propositional (Boolean) logic Equivalence, validity, satisfiability Inference rules and theorem.
Logical Agents Russell & Norvig Chapter 7. Outline Knowledge-based agents Wumpus world Logic in general - models and entailment Propositional (Boolean)
Logical Agents Chapter 7. Outline Knowledge-based agents Wumpus world Logic in general - models and entailment Propositional (Boolean) logic Equivalence,
Logical Agents Chapter 7. Outline Knowledge-based agents Wumpus world Logic in general - models and entailment Propositional (Boolean) logic Equivalence,
Logical Agents Chapter 7 Part I. 2 Outline Knowledge-based agents Wumpus world Logic in general - models and entailment Propositional (Boolean) logic.
Logical Agents Chapter 7. Outline Knowledge-based agents Wumpus world Logic in general - models and entailment Propositional (Boolean) logic Equivalence,
Artificial Intelligence Logical Agents Chapter 7.
LOGICAL AGENTS CHAPTER 7 AIMA 3. OUTLINE  Knowledge-based agents  Wumpus world  Logic in general - models and entailment  Propositional (Boolean)
CS666 AI P. T. Chung Logic Logical Agents Chapter 7.
Logical Agents. Outline Knowledge-based agents Logic in general - models and entailment Propositional (Boolean) logic Equivalence, validity, satisfiability.
Propositional Logic: Logical Agents (Part I)
Notes 7: Knowledge Representation, The Propositional Calculus
Knowledge and reasoning – second part
EA C461 – Artificial Intelligence Logical Agent
Notes 7: Knowledge Representation, The Propositional Calculus
Logical Agents Chapter 7.
Artificial Intelligence Logical Agents
EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS
Logical Agents Chapter 7 Selected and slightly modified slides from
Logical Agents Reading: Russell’s Chapter 7
Logical Agents.
Logical Agents Chapter 7.
Artificial Intelligence
Artificial Intelligence: Agents and Propositional Logic.
Artificial Intelligence: Logic agents
Knowledge and reasoning – second part
Logical Agents Chapter 7.
CS 416 Artificial Intelligence
Knowledge Representation I (Propositional Logic)
Problems in AI Problem Formulation Uninformed Search Heuristic Search
LECTURE 06 Logical Agent Course : T0264 – Artificial Intelligence
Logical Agents Prof. Dr. Widodo Budiharto 2018
Presentation transcript:

Logical Agents

Inference : Example 1 How many variables? 3 variables A,B,C How many models? 2 3 = 8 models

Enumeration: Solution

Wumpus World PEAS description Performance measure  gold +1000, death  -1 per step, -10 for using the arrow Environment  Squares adjacent to wumpus are smelly  Squares adjacent to pit are breezy  Glitter iff gold is in the same square  Shooting kills wumpus if you are facing it  Shooting uses up the only arrow  Grabbing picks up gold if in same square  Releasing drops the gold in same square Sensors: Stench, Breeze, Glitter, Bump, Scream Actuators: Left turn, Right turn, Forward, Grab, Release, Shoot

Wumpus world PEAS description Fully Observable  No – only local perception Deterministic  Yes – outcomes exactly specified Episodic  No – sequential at the level of actions Static Yes  Wumpus and Pits do not move Discrete  Yes Single-agent?  Yes – Wumpus is essentially a natural feature

Entailment in the wumpus world Situation after detecting nothing in [1,1], moving right, breeze in [2,1] Consider possible models for KB assuming only pits 3 Boolean choices  8 possible models

Inference Definition: KB ├ i α = sentence α can be derived from KB by procedure i Soundness: i is sound if whenever KB ├ i α, it is also true that KB╞ α Completeness: i is complete if whenever KB╞ α, it is also true that KB ├ i α Preview: we will define a logic (first-order logic) which is expressive enough to say almost anything of interest, and for which there exists a sound and complete inference procedure. That is, the procedure will answer any question whose answer follows from what is known by the KB.

Propositional logic: Syntax Propositional logic is the simplest logic – illustrates basic ideas The proposition symbols P 1, P 2 etc are sentences  If S is a sentence,  S is a sentence (negation)  If S 1 and S 2 are sentences, S 1  S 2 is a sentence (conjunction)  If S 1 and S 2 are sentences, S 1  S 2 is a sentence (disjunction)  If S 1 and S 2 are sentences, S 1  S 2 is a sentence (implication)  If S 1 and S 2 are sentences, S 1  S 2 is a sentence (biconditional)

Propositional logic: Semantics Each model specifies true/false for each proposition symbol E.g. P 1,2 P 2,2 P 3,1 falsetruefalse With these symbols, 8 possible models, can be enumerated automatically. Rules for evaluating truth with respect to a model m:  Sis true iff S is false S 1  S 2 is true iff S 1 is true and S 2 is true S 1  S 2 is true iff S 1 is true or S 2 is true S 1  S 2 is true iffS 1 is false orS 2 is true i.e., is false iffS 1 is true andS 2 is false S 1  S 2 is true iffS 1  S 2 is true andS 2  S 1 is true Simple recursive process evaluates an arbitrary sentence, e.g.,  P 1,2  (P 2,2  P 3,1 ) = true  (true  false) = true  true = true

Truth tables for connectives

Wumpus world sentences Let P i,j be true if there is a pit in [i, j]. Let B i,j be true if there is a breeze in [i, j].  P 1,1  B 1,1 B 2,1 "Pits cause breezes in adjacent squares" B 1,1  (P 1,2  P 2,1 ) B 2,1  (P 1,1  P 2,2  P 3,1 ) How many variables? How many models?

Logical equivalence Two sentences are logically equivalent} iff true in same models: α ≡ ß iff α╞ β and β╞ α

Validity and satisfiability A sentence is valid if it is true in all models, e.g., True,A  A, A  A, (A  (A  B))  B Validity is connected to inference via the Deduction Theorem: KB ╞ α if and only if (KB  α) is valid A sentence is satisfiable if it is true in some model e.g., A  B, C A sentence is unsatisfiable if it is true in no models e.g., A  A Satisfiability is connected to inference via the following: KB ╞ α if and only if (KB  α) is unsatisfiable

Proof methods Proof methods divide into (roughly) two kinds:  Application of inference rules Legitimate (sound) generation of new sentences from old Proof = a sequence of inference rule applications  Can use inference rules as operators in a standard search algorithm Typically require transformation of sentences into a normal form  Model checking truth table enumeration (always exponential in n) improved backtracking, e.g., Davis--Putnam-Logemann-Loveland (DPLL) heuristic search in model space (sound but incomplete) e.g., min-conflicts-like hill-climbing algorithms

15 Inference rules

Reasoning Patterns Modus Ponens

Reasoning Patterns And Elimination

Reasoning Patterns Other logical equivalences

Reasoning Patterns Example:  Knowledge base is Wumpus World Percepts

Reasoning Patterns

(modus ponens)

Reasoning Patterns Neither (1,2) nor (2,1) contain a pit!

Reasoning Patterns Inference in propositional logic is NP- complete! However, inference in propositional logic shows monoticity:  Adding more rules to a knowledge base does not affect earlier inferences

Summary Logical agents apply inference to a knowledge base to derive new information and make decisions Basic concepts of logic:  syntax: formal structure of sentences  semantics: truth of sentences wrt models  entailment: necessary truth of one sentence given another  inference: deriving sentences from other sentences  soundness: derivations produce only entailed sentences  completeness: derivations can produce all entailed sentences Wumpus world requires the ability to represent partial and negated information, reason by cases, etc. Propositional logic lacks expressive power