NSTX S.A. Sabbagh S.A. Sabbagh 1, R.E. Bell 2, J.E. Menard 2, D.A. Gates 2, J.M. Bialek 1, B. LeBlanc 2, F. Levinton 3, K. Tritz 4, H. Yu 3 XP728: RWM.

Slides:



Advertisements
Similar presentations
Berkery – Kinetic Stabilization NSTX Jack Berkery Kinetic Effects on RWM Stabilization in NSTX: Initial Results Supported by Columbia U Comp-X General.
Advertisements

Study of tearing mode stability in the presence of external perturbed fields Experimental validation of MARS-K/Q and RDCON codes Z.R. Wang 1, J.-K. Park.
E D Fredrickson a, J Menard a, D. Stutman b, K. Tritz b a Princeton Plasma Physics Laboratory, NJ b Johns Hopkins University, MD 46 th Annual Meeting of.
NSTX-U T&T TSG Contributions to FY15 JRT NSTX-U Supported by Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U.
E.D. Fredrickson, a W.W. Heidbrink, b C.Z. Cheng, a N.N. Gorelenkov, a E. Belova, a A.W. Hyatt, c G.J. Kramer, a J. Manickam, a J. Menard, a R. Nazikian,
Development and characterization of intermediate- δ discharge with lithium coatings XP-919 Josh Kallman Final XP Review June 5, 2009 NSTX Supported by.
NSTX S. A. Sabbagh 1, M.G. Bell 2, R.E. Bell 2, L. L. Lao 3, B.P. LeBlanc 2, F.M. Levinton 4, J.E. Menard 2, C. Zhang 5 Reconstruction of NSTX Equilibria.
NSTX S. A. Sabbagh XP501: MHD spectroscopy of wall stabilized high  plasmas  Motivation  Resonant field amplification (RFA) observed in high  NSTX.
Use of 3D fields for ELM Pace-Making in NSTX Lithium Enhanced H-Modes PFC Community Meeting Cambridge, MA July 8-10, 2009 NSTX Supported by College W&M.
NSTX Status and Plans College W&M Colorado Sch Mines Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York.
NSTX XP830 review – J.W. Berkery J.W. Berkery, S.A. Sabbagh, H. Reimerdes Supported by Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL.
NSTX SAS – APS DPP ‘05 Supported by Office of Science S.A. Sabbagh 1, A.C. Sontag 1, W. Zhu 1, M.G. Bell 2, R. E. Bell 2, J. Bialek 1, D.A. Gates 2, A.
J. Manickam, C. Kessel and J. Menard Princeton Plasma Physics Laboratory Special thanks to R. Maingi, ORNL and S. Sabbagh, Columbia U. 45 th Annual Meeting.
J.R. Wilson, R.E. Bell, S. Bernabei, T. Biewer, J. C. Hosea, B. LeBlanc, M. Ono, C. K. Phillips Princeton Plasma Physics Laboratory P. Ryan, D.W Swain.
Relay Feedback and X-point Height Control Egemen Kolemen S. Gerhardt and D. A. Gates 2010 Results Review Nov/30/2010 NSTX Supported by College W&M Colorado.
XP1518: RWM PID control optimization based on theory and experiment S. A. Sabbagh, J.W. Berkery, J.M Bialek Y.S. Park, (et al…) Department of Applied Physics,
Non-axisymmetric Control Coil Upgrade and related ideas NSTX Supported by V1.0 Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U.
Current status of high k scattering system J. Kim 1, Y. Ren 2, K-C. Lee 3 and R. Kaita 2 1) POSTECH 2) PPPL 3) UC Davis NSTX Monday Physics Meeting LSB-318,
1 Update on Run Schedule R. Raman NSTX Team Meeting PPPL, Princeton, NJ, 08 February, 2006 Work supported by DOE contract numbers DE-FG02-99ER54519 AM08,
Supported by Office of Science Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U U.
Supported by Office of Science Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U U.
Radiative divertor with impurity seeding in NSTX V. A. Soukhanovskii (LLNL) Acknowledgements: NSTX Team NSTX Results Review Princeton, NJ Wednesday, 1.
Prototype Multi-Energy Soft X-ray Diagnostic for EAST Kevin Tritz Johns Hopkins University NSTX-U Monday Physics Meeting PPPL, Princeton, NJ June 25 th,
Beam Ion Profiles with the SSNPA Diagnostic Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics NYU ORNL PPPL.
NSTX IAEA FEC 2006 PD: S.A. Sabbagh 1 Supported by Office of Science S.A. Sabbagh 1, R. E. Bell 2, J.E. Menard 2, D.A. Gates 2, A.C. Sontag 1, J.M. Bialek.
Direct measurement of plasma response using Nyquist Contour Z.R. Wang 1, J.-K. Park 1, M. J. Lanctot 2, J. E. Menard 1,Y.Q. Liu 3, R. Nazikian 1 1 Princeton.
NSTX-U Supported by Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U U Tokyo JAEA Inst for Nucl.
Supported by Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics NYU ORNL PPPL PSI SNL UC Davis UC Irvine UCLA.
Second Switching Power Amplifier (SPA) Upgrade Physics Considerations Discussion S.A. Sabbagh 1, and the NSTX Research Team 1 Department of Applied Physics,
1 R Raman, B.A. Nelson, D. Mueller 1, T.R. Jarboe, M.G. Bell 1, J. Menard 1, R. Maqueda 2 et al. University of Washington, Seattle 1 Princeton Plasma Physics.
Xp705: Multimode ion transport: TAE avalanches E D Fredrickson, N A Crocker, N N Gorelenkov, W W Heidbrink, S Kubota, F M Levinton, H Yuh, R E Bell NSTX.
NSTX WZ – XP524 - NSTX Results Review ‘05 Supported by Office of Science Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT.
NSTX XP818: ELM mitigation w/midplane coils - SAS S. A. Sabbagh, J-K. Park, T. Evans, S. Gerhardt, R. Maingi, J.E. Menard, many others… (joint ELM mitigation.
1 Roger Raman for the NSTX Research Team University of Washington, Seattle NSTX Run Usage 27 February – 5 May, 2006 NSTX Mid-Run Assessment PPPL, Princeton,
Energy Confinement Scaling in the Low Aspect Ratio National Spherical Torus Experiment (NSTX) S. M. Kaye, M.G. Bell, R.E. Bell, E.D. Fredrickson, B.P.
XP1020: Determination of Weak RWM Stability Rotation Profiles J.W. Berkery, S.A. Sabbagh, H. Reimerdes Department of Applied Physics, Columbia University,
Supported by Office of Science NSTX H. Yuh (Nova Photonics) and the NSTX Group, PPPL Presented by S. Kaye 4 th T&C ITPA Meeting Culham Lab, UK March.
Development and characterization of intermediate- δ discharge with lithium coatings XP-919 Josh Kallman XP Review - ASC Feb 2, 2009 NSTX Supported by College.
NSTX MHD Mode Control Mtg S.A. Sabbagh 1 RWM Stabilization and Control Research on NSTX S.A. Sabbagh 1, J.M. Bialek 1, R.E. Bell 2, D.A. Gates 2,
1 Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics NYU ORNL PPPL PSI SNL UC Davis UC Irvine UCLA UCSD U Maryland.
NSTX S. A. Sabbagh 1, J. Bialek 1, A. Sontag 1, W. Zhu 1, B. LeBlanc 2, R. E. Bell 2, A. H. Glasser 3, L. L. Lao 4, J.E. Menard 2, M. Bell 2, T. Biewer.
MARS analysis of rotational stabilization of the RWM in NSTX & DIII-D AT plasmas Supported by Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL.
NSTX XP1031: MHD/ELM stability vs. thermoelectric J, edge J, and collisionality -NSTX Physics Mtg. 6/28/10 - S.A. Sabbagh, et al. S.A. Sabbagh 1, T.E.
Enhancement of edge stability with lithium wall coatings in NSTX Rajesh Maingi, Oak Ridge National Lab R.E. Bell, B.P. LeBlanc, R. Kaita, H.W. Kugel, J.
Effect of 3-D fields on edge power/particle fluxes between and during ELMs (XP1026) A. Loarte, J-W. Ahn, J. M. Canik, R. Maingi, and J.-K. Park and the.
First results of fast IR camera diagnostic J-W. Ahn and R. Maingi ORNL NSTX Monday Physics Meeting LSB-318, PPPL June 22, 2009 NSTX Supported by College.
Supported by Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics NYU ORNL PPPL PSI SNL UC Davis UC Irvine UCLA.
NSTX Sabbagh/Shaing S. A. Sabbagh 1, K.C. Shaing 2, et al. XP743: Island-induced neoclassical toroidal viscosity and dependence on i Supported by Columbia.
Supported by Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics NYU ORNL PPPL PSI SNL UC Davis UC Irvine UCLA.
1 Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics NYU ORNL PPPL PSI SNL UC Davis UC Irvine UCLA UCSD U Maryland.
Supported by Office of Science NSTX S.M. Kaye, PPPL ITPA PPPL 5-7 Oct Confinement and Transport in NSTX: Lithiumized vs non-Lithiumized Plasmas Culham.
SMK – IAEA ‘041 Stanley M. Kaye for the NSTX Research Team PPPL, Princeton University, U.S.A. 20 th IAEA Fusion Energy Conference Vilamoura, Portugal November.
NSTX-U Disruption PAM Working Group – Controlled Shutdown XP Discussion S. A. Sabbagh and R. Raman Department of Applied Physics, Columbia University,
Global Mode Stability and Active Control in NSTX S.A. Sabbagh 1, J.W. Berkery 1, R.E. Bell 2, J.M. Bialek 1, S. Gerhardt 2, R. Betti 3, D.A. Gates 2, B.
Planning for Toroidal Lithium Divertor Target for NSTX and Supporting Experiments on CDX-U/LTX R. Kaita Boundary Physics Science Focus Group Meeting July.
NSTX 2007 MHD XP Review – J. Menard 1 Optimization of RFA detection algorithms during dynamic error field correction Presented by: J.E. Menard, PPPL Final.
Presently Planned Vacuum-Side Diagnostics for the NSTX-Upgrade Center Column NSTX Supported by Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima.
XP-945: ELM Pacing via Vertical Position Jogs S.P. Gerhardt, J.M. Canik, D. Gates, R. Goldston, R. Hawryluk, R. Maingi, J. Menard, S. Sabbagh, A. Sontag.
NSTX Electron Bernstein Wave Research - Taylor 1 of 8 Supported by Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics.
Preliminary Results from XP1020 RFA Measurements J.W. Berkery Department of Applied Physics, Columbia University, New York, NY, USA NSTX Monday Physics.
1 Status of the 2008 ASC TSG Run plan Presented by D. A. Gates (J. Menard Deputy) At the NSTX Mid-run asessment PPPL April 16, 2008 Supported by Office.
NSTX S. A. Sabbagh XP452: RWM physics with initial global mode stabilization coil operation  Goals  Alter toroidal rotation / examine critical rotation.
NSTX XP802 review - S.A. Sabbagh S.A. Sabbagh 1, R.E. Bell 2, S. Gerhardt 2, J.E. Menard 2, J.W. Berkery 1, J.M. Bialek 1, D.A. Gates 2, B. LeBlanc 2,
1 Roger Raman for the NSTX Research Team University of Washington, Seattle Update on the NSTX Run Plan PPPL, Princeton, NJ, 15 May, 2006 Supported by Office.
Monitoring impact of the LLD Adam McLean, ORNL T. Gray, R. Maingi Lithium, TSG group preliminary research forum PPPL, B252 Nov. 23, 2009 NSTX Supported.
GO : Progress toward fully non-inductive operation in NSTX Jonathan Menard, PPPL For the NSTX Team 47 th Annual Meeting of the DPP Monday–Friday,
NSTX S. A. Sabbagh XP407: Passive Stabilization Physics of the RWM in High  N ST Plasmas – 4/13/04  Goals  Define RWM stability boundary in (V , 
Correlation between Electron Transport and Shear Alfven Activity in NSTX College W&M Colorado Sch Mines Columbia U Comp-X General Atomics INEL Johns Hopkins.
NSTX XP1062 (NTV) team review: 9/16/10 - S.A. Sabbagh, et al. S.A. Sabbagh, R.E. Bell, J.W. Berkery, S.P. Gerhardt, J-K Park, et al. XP1062: NTV behavior.
Neutron diagnostic calibration transfer XMP D. Darrow and the NSTX Research Team XMP & XP review meeting Control Room Annex June 11, 2015 NSTX-U Supported.
Presentation transcript:

NSTX S.A. Sabbagh S.A. Sabbagh 1, R.E. Bell 2, J.E. Menard 2, D.A. Gates 2, J.M. Bialek 1, B. LeBlanc 2, F. Levinton 3, K. Tritz 4, H. Yu 3 XP728: RWM active stabilization and optimization – ITER scenario Supported by Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics NYU ORNL PPPL PSI SNL UC Davis UC Irvine UCLA UCSD U Maryland U New Mexico U Rochester U Washington U Wisconsin Culham Sci Ctr Hiroshima U HIST Kyushu Tokai U Niigata U Tsukuba U U Tokyo JAERI Ioffe Inst TRINITI KBSI KAIST ENEA, Frascati CEA, Cadarache IPP, Jülich IPP, Garching U Quebec NSTX Team XP Review Meeting May 8th, 2007 Princeton Plasma Physics Laboratory V1.1 1 Department of Applied Physics, Columbia University, New York, NY 2 Plasma Physics Laboratory, Princeton University, Princeton, NJ, USA 3 Nova Photonics, Inc., Princeton, NJ, USA 4 Johns Hopkins University, Baltimore, MD, USA

NSTX S.A. Sabbagh XP728: RWM active stabilization and optimization Goals  Investigate variations of control sensor combinations to optimize RWM stabilization at low plasma rotation,   (more robust, reach higher  N ) Use upper/lower RWM B r, B p sensors for feedback (ran out of time in 2006) Examine possible poloidal deformation of RWM during feedback  Investigate active stabilization of recent plasmas that exhibit unstable RWM activity leading to discharge termination at high  .  Explore possible stable region at   <   i with feedback is turned off  Investigate RWM active stabilization of low   plasma with superposed time-averaged n = 1 error field correction + n = 3 magnetic braking (Fredrickson, Garofalo suggestion from 2006, but no run time)  Measure n =2-3 RFA, attempt to destabilize n = 2 RWM with n = 1 stable  Introduce and study effect of applied time delay on feedback (ITER support) Depends on control system time delay capability in 2007 Addresses  NSTX milestone R(07-2), NSTX PAC request  ITPA experiment MDC-2, ITER issue card RWM-1, USBPO MHD task

NSTX S.A. Sabbagh RWM actively stabilized at low, ITER-relevant rotation NN I A (kA)  B pu n=1 (G)  B pu n=2 (G)   /2  (kHz)  N >  N (n=1) no-wall   <  crit 92 x (1/  RWM ) t(s) Control OFF Control ON (Sabbagh, et al., PRL 97 (2006) ) Logical next-step of XP615 addresses several key issues  Optimal RWM sensor configuration  Dependence of active stabilization on    Possible stable region at sufficiently low   without active stabilization  If stable region with low   is found, scan magnitude to determine range of stable  . Approach  Follow established Xp615 procedure to generate RWM stabilized, low rotation target  Make control system parameters scans, rotation scans to fulfill stated goals

NSTX S.A. Sabbagh Poloidal deformation of RWM sometimes observed  Poloidal n = 1 RWM field decreases to near zero; radial field increasing Subsequent growth of poloidal RWM field  Asymmetric above/below midplane Radial sensors show RWM bulging at midplane  midplane signal increases, upper/lower signals decrease  Theory: may be due to other stable ideal n = 1 modes becoming less stable Approach  Include full set of RWM sensors (upper and lower, B p and B r ) in feedback circuit – new PCS capability (tested piggyback 2006) Test improved control with addition of new sensors t (s) NN   /2  ( kHz )  B pu,l n=1 (G)  B ru,l n=1 (G)  B r ext n=1 (G)  N collapse bulge   ~  crit upper lower

NSTX S.A. Sabbagh /A/A passively stabilized by rotation (120038, t = 0.535s) experimental critical rotation profile (120712, t = 0.575s) actively stabilized ( t = 0.825s) R (m)  crit /  A (axis) (q=2) Does stable high  N, low   region exist without feedback in NSTX? Non-resonant n = 3 magnetic braking used to slow profile  The   /  A < 0.01| q = 2  The   /  crit = 0.2| q = 2  The   /  crit = 0.3| axis  Less than ½ of ITER Advanced Scenario 4   /  crit (Liu, et al., NF 45 (2005) 1131.) Possible energy dissipation at low rotation speeds  trapped particle precession drift stabilization at   <   i (Betti and Hu, PRL 93 (2004) ) Approach  Generate  N >  N no-wall (n = 1) actively stabilized plasma at low   magnitude  Gate feedback off/on to probe low rotation stable operating regime (seen in DIII-D – Reimerdes, et al. PRL 98 (2007) ) (120717, t = 0.915s) }

NSTX S.A. Sabbagh n = 2 RWM does not become unstable during n = 1 stabilization Control ON (fast  N drop, plasma recovers)  B pu (G) USXR (arb) edge core t(s) t(s) 20  s negative feedback response n = 1 n = 2 n = 2 internal mode t(s) (kHz) n = 1 n = 2 Internal mode ~ 25 kHz (n=2) …but, can the n = 2 RWM be driven unstable at higher  N ?  Unstable n = 1 – 3 RWMs already observed in NSTX (Sabbagh, et al., NF 46 (2006) 635.)  Generate controlled, measured n = 2 RFA during n = 1 stabilization, and drive unstable Approach  RFA measurements for n = 2 and 3 can be made for most conditions  To destabilize n = 2 RWM, use “optimized” control system configuration and plasma configuration to maximize  N

NSTX S.A. Sabbagh XP728: Active RWM Stabilization - Run plan (Part 1) Task Number of Shots 1) Create target plasma A) Run active feedback in piggyback mode in prior experiments to verify operation- B) 3 NBI,  > 2.2,  N >  N no-wall (control shot as setup shot)1 C) Drop I p to 0.9 MA from 1.0 MA1 2) Reproduce active RWM stabilization at low plasma rotation A) n = 3 braking, n = 1 feedback w/B pu sensors, adjust n = 3 braking if   > 0.5  crit 2 B) Reproduce (2A) with n = 1 feedback off - demonstrate unstable RWM at low   2 3) Optimize n = 1 feedback sensors at low   A) Adjust relative phase between sensors / RWM coil current if (2A) <> shot B) Add B pl sensors to feedback circuit1 C) Use B pu + B pl average (150 degree spatial offset)1 F) Vary relative phase between sensors / RWM coil4 D) Add upper/lower B r sensors to feedback circuit1 E) Add B ru + B rl average (260 degree spatial offset)2 G) Vary relative phase / feedback parameters to further optimize performance6 __________________________________________________________ Total: 24

NSTX S.A. Sabbagh XP728: Active RWM Stabilization - Run plan (Part 2) Task Number of Shots 4) n = 1 RWM stabilization with various rotation profiles <  crit (best feedback settings from step (3)) A) Vary n = 3 braking current to create scan of profiles 0 <   <<  crit 8 Gate off active feedback for many wall times (100 ms) to determine which, if any profiles are stable at low rotation without n = 1 feedback B) If any   profiles are stable without n = 1 feedback in (5A), re-run shot with2 feedback turned off 5) Check pre-programmed average of n = 1 feedback current for stabilization A) Attempt stabilization using avg. n = 1 feedback current for best case of (3) above2 B) If successful, vary plasma parameter(s) (e.g.  ) to test robustness of stabilization2 6) Measure n > 1 RFA at maximum  N ; attempt n = 2 RWM destabilization with n = 1 stable A) Take highest  N stabilized plasma at low and run at maximum  N /  N no-wall (options: increase NBI power, optimize DRSEP, use lithium, drop I p by 100A) 2 7) Examine feedback performance vs. feedback system latency A) Increase feedback system latency from optimized settings to find critical latency for mode stabilization6 __________________________________________________ Total: 16 w/o latency scan; 22 with latency scan

NSTX S.A. Sabbagh XP728: Active RWM stabilization - Diagnostics Required diagnostics  Internal RWM sensors  CHERS toroidal rotation measurement  Thomson scattering (30 point)  USXR  MSE  Toroidal Mirnov array / between-shots spectrogram with toroidal mode number analysis  Diamagnetic loop Desired diagnostics  FIReTip  Fast camera