Game Theory: introduction and applications to computer networks Game Theory: introduction and applications to computer networks Introduction Giovanni Neglia.

Slides:



Advertisements
Similar presentations
Network Economics -- Lecture 4: Auctions and applications Patrick Loiseau EURECOM Fall 2012.
Advertisements

6.896: Topics in Algorithmic Game Theory Lecture 20 Yang Cai.
Blackbox Reductions from Mechanisms to Algorithms.
Pure and Bayes-Nash Price of Anarchy for GSP Renato Paes Leme Éva Tardos CornellCornell & MSR.
Performance Evaluation Sponsored Search Markets Giovanni Neglia INRIA – EPI Maestro 4 February 2013.
Multi-item auctions with identical items limited supply: M items (M smaller than number of bidders, n). Three possible bidder types: –Unit-demand bidders.
Game Theory in Wireless and Communication Networks: Theory, Models, and Applications Lecture 6 Auction Theory Zhu Han, Dusit Niyato, Walid Saad, Tamer.
Auction. Types of Auction  Open outcry English (ascending) auction Dutch (descending) auction  Sealed bid First-price Second-price (Vickrey)  Equivalence.
Auction Theory Class 3 – optimal auctions 1. Optimal auctions Usually the term optimal auctions stands for revenue maximization. What is maximal revenue?
Optimal auction design Roger Myerson Mathematics of Operations research 1981.
Game Theory: introduction and applications to computer networks Game Theory: introduction and applications to computer networks Zero-Sum Games (follow-up)
Seminar In Game Theory Algorithms, TAU, Agenda  Introduction  Computational Complexity  Incentive Compatible Mechanism  LP Relaxation & Walrasian.
Sponsored Search Presenter: Lory Al Moakar. Outline Motivation Problem Definition VCG solution GSP(Generalized Second Price) GSP vs. VCG Is GSP incentive.
Bundling Equilibrium in Combinatorial Auctions Written by: Presented by: Ron Holzman Rica Gonen Noa Kfir-Dahav Dov Monderer Moshe Tennenholtz.
Algorithmic Applications of Game Theory Lecture 8 1.
Lecture 1 - Introduction 1.  Introduction to Game Theory  Basic Game Theory Examples  Strategic Games  More Game Theory Examples  Equilibrium  Mixed.
Social Networks 101 P ROF. J ASON H ARTLINE AND P ROF. N ICOLE I MMORLICA.
Sponsored Search Auctions 1. 2 Traffic estimator.
FLOWER AUCTIONS IN AMSTERDAM. Ad Auctions March 16, 2007.
SECOND PART: Algorithmic Mechanism Design. Mechanism Design MD is a subfield of economic theory It has a engineering perspective Designs economic mechanisms.
SECOND PART: Algorithmic Mechanism Design. Implementation theory Imagine a “planner” who develops criteria for social welfare, but cannot enforce the.
Mechanism Design Traditional Algorithmic Setting Mechanism Design Setting.
SECOND PART: Algorithmic Mechanism Design. Suggested readings Algorithmic Game Theory, Edited by Noam Nisan, Tim Roughgarden, Eva Tardos, and Vijay V.
Week 61 COS 444 Internet Auctions: Theory and Practice Spring 2009 Ken Steiglitz
Yang Cai Sep 15, An overview of today’s class Myerson’s Lemma (cont’d) Application of Myerson’s Lemma Revelation Principle Intro to Revenue Maximization.
Position Auctions Paper by Hal Varian, Presented by Rahul Jain.
Auction Theory Class 2 – Revenue equivalence 1. This class: revenue Revenue in auctions – Connection to order statistics The revelation principle The.
The Science of Networks 7.1 Today’s topics Sponsored Search Markets Acknowledgements Notes from Nicole Immorlica & Jason Hartline.
Yang Cai Sep 8, An overview of the class Broad View: Mechanism Design and Auctions First Price Auction Second Price/Vickrey Auction Case Study:
Multi-Unit Auctions with Budget Limits Shahar Dobzinski, Ron Lavi, and Noam Nisan.
Introduction 1 TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAA A.
© 2009 Institute of Information Management National Chiao Tung University Lecture Note II-3 Static Games of Incomplete Information Static Bayesian Game.
Game Theory: introduction and applications to computer networks Game Theory: introduction and applications to computer networks Two-person non zero-sum.
Combinatorial Auctions By: Shai Roitman
More on Social choice and implementations 1 TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAA A Using slides by Uri.
6.853: Topics in Algorithmic Game Theory Fall 2011 Constantinos Daskalakis Lecture 21.
Auction Theory תכנון מכרזים ומכירות פומביות Topic 7 – VCG mechanisms 1.
Topic 2: Designing the “optimal auction” Reminder of previous classes: Discussed 1st price and 2nd price auctions. Found equilibrium strategies. Saw that.
Game Theory: introduction and applications to computer networks Game Theory: introduction and applications to computer networks Lecture 2: two-person non.
Game Theory: introduction and applications to computer networks Game Theory: introduction and applications to computer networks Introduction Giovanni Neglia.
Mechanism Design II CS 886:Electronic Market Design Sept 27, 2004.
Steffen Staab 1WeST Web Science & Technologies University of Koblenz ▪ Landau, Germany Network Theory and Dynamic Systems Auctions.
6.853: Topics in Algorithmic Game Theory Fall 2011 Constantinos Daskalakis Lecture 22.
Auctions serve the dual purpose of eliciting preferences and allocating resources between competing uses. A less fundamental but more practical reason.
Network Formation Games. NFGs model distinct ways in which selfish agents might create and evaluate networks We’ll see two models: Global Connection Game.
Advanced Subjects in GT Prepared by Rina Talisman Introduction Revenue Equivalence The Optimal Auction (Myerson 1981) Auctions.
Network Formation Games. NFGs model distinct ways in which selfish agents might create and evaluate networks We’ll see two models: Global Connection Game.
Satisfaction Games in Graphical Multi-resource Allocation
CPS Mechanism design Michael Albert and Vincent Conitzer
Mechanism design with correlated distributions
Comp/Math 553: Algorithmic Game Theory Lecture 09
CSCI 3210: Computational Game Theory
Games for Crowds & Networks
Tuomas Sandholm Computer Science Department Carnegie Mellon University
AdWords and Generalized On-line Matching
The Structure of Networks
Laddered auction Ashish Goel tanford University
Game Theory in Wireless and Communication Networks: Theory, Models, and Applications Lecture 6 Auction Theory Zhu Han, Dusit Niyato, Walid Saad, Tamer.
Presented By Aaron Roth
Chapter 4 Bidding for Ad Spaces
Economics and Computation Week #13 Revenue of single Item auctions
Network Formation Games
Vincent Conitzer Mechanism design Vincent Conitzer
Vincent Conitzer CPS 173 Mechanism design Vincent Conitzer
Auctions Lirong Xia. Auctions Lirong Xia Sealed-Bid Auction One item A set of bidders 1,…,n bidder j’s true value vj bid profile b = (b1,…,bn) A sealed-bid.
Network Formation Games
Bayes Nash Implementation
Information, Incentives, and Mechanism Design
Auction Theory תכנון מכרזים ומכירות פומביות
Class 2 – Revenue equivalence
Presentation transcript:

Game Theory: introduction and applications to computer networks Game Theory: introduction and applications to computer networks Introduction Giovanni Neglia INRIA – EPI Maestro 3 February 2014 Part of the slides are based on a previous course with D. Figueiredo (UFRJ) and H. Zhang (Suffolk University)

Always an equilibrium with small Loss of Efficiency?  Consider only affine cost functions, i.e. c α (x)= a α +b α x r We will use the potential to derive a bound on the social cost of a NE m P(f) <= C S (f) <= 2 P(f) fαfα C α (x ) x P α (f α ) C α (f α )

Always an equilibrium with small Loss of Efficiency? r Consider only affine cost functions i.e. c α (x)= a α +b α x r We will use the potential to derive a bound on the social cost of a NE m P(f) <= C S (f) <= 2 P(f) r P(f) = Σ  ε E P  =Σ  ε E Σ t=1,…f  c  (t) <= <=Σ  ε E Σ t=1,…f  c  (f  )=Σ  ε E f  c  (f  )=C S (f) r P(f) = Σ  ε E P  =Σ  ε E Σ t=1,…f  (a α +b α t)= =Σ  ε E f α a α +b α f α (f α +1)/2 >= Σ  ε E f α (a α +b α f α )/2 =C S (f)/2

Always an equilibrium with small Loss of Efficiency? r Consider only affine cost functions i.e. c α (x)= a α +b α x r P(f) <= C S (f) <= 2 P(f) r Let’s imagine to start from routing f Opt with the optimal social cost C S (f Opt ), r Applying the BR dynamics we arrive to a NE with routing f NE and social cost C S (f NE ) r C S (f NE ) <= 2 P(f NE ) <= 2 P(f Opt ) <= 2 C S (f Opt ) r The LoE of this equilibrium is at most 2

Same technique, different result r Consider a network with a routing at the equilibrium r Add some links r Let the system converge to a new equilibrium r The social cost of the new equilibrium can be at most 4/3 of the previous equilibrium social cost (as in the Braess Paradox)

Loss of Efficiency, Price of Anarchy, Price of Stability r Loss of Efficiency (LoE) m given a NE with social cost C S (f NE ) m LoE = C S (f NE ) / C S (f Opt ) r Price of Anarchy (PoA) [Koutsoupias99] m Different settings G (a family of graph, of cost functions,...) m X g =set of NEs for the setting g in G  PoA = sup g ε G sup NE ε Xg {C S (f NE ) / C S (f Opt )} => “worst” loss of efficiency in G r Price of Stability (PoS) [Anshelevish04]  PoS = sup g ε G inf NE ε Xg {C S (f NE ) / C S (f Opt )} => guaranteed loss of efficiency in G

Stronger results for affine cost functions r We have proven that for unit-traffic routing games the PoS is at most 2 r For unit-traffic routing games and single- source pairs the PoS is 4/3 r For non-atomic routing games the PoA is 4/3 m non-atomic = infinite players each with infinitesimal traffic r For other cost functions they can be much larger (even unbounded)

Performance Evaluation Sponsored Search Markets Giovanni Neglia INRIA – EPI Maestro 4 February 2013

Google r A class of games for which there is a function P(s 1,s 2,…s N ) such that m For each i U i (s 1,s 2,…x i,…s N )>U i (s 1,s 2,…y i,…s N ) if and only if P(s 1,s 2,…x i,…s N )>P(s 1,s 2,…y i,…s N ) r Properties of potential games: Existence of a pure-strategy NE and convergence to it of best-response dynamics r The routing games we considered are particular potential games

How it works r Companies bid for keywords r On the basis of the bids Google puts their link on a given position (first ads get more clicks) r Companies are charged a given cost for each click (the cost depends on all the bids)

Some numbers r ≈ 95% of Google revenues (46 billions$) from ads m investor.google.com/financial/tables.html m 87% of Google-Motorola revenues (50 billions$) r Costs m "calligraphy pens" $1.70 m "Loan consolidation" $50 m "mesothelioma" $50 per click r Click fraud problem

Outline r Preliminaries m Auctions m Matching markets r Possible approaches to ads pricing r Google mechanism r References m Easley, Kleinberg, "Networks, Crowds and Markets", ch.9,10,15

Types of auctions r 1 st price & descending bids r 2 nd price & ascending bids

Game Theoretic Model r N players (the bidders) r Strategies/actions: b i is player i’s bid r For player i the good has value v i r p i is player i’s payment if he gets the good r Utility: m v i -p i if player i gets the good m 0 otherwise r Assumption here: values v i are independent and private m i.e. very particular goods for which there is not a reference price

Game Theoretic Model r N players (the bidders) r Strategies: b i is player i’s bid r Utility: m v i -b i if player i gets the good m 0 otherwise r Difficulties: m Utilities of other players are unknown! m Better to model the strategy space as continuous m Most of the approaches we studied do not work!

2 nd price auction r Player with the highest bid gets the good and pays a price equal to the 2 nd highest bid r There is a dominant strategies m I.e. a strategy that is more convenient independently from what the other players do m Be truthful, i.e. bid how much you evaluate the good (b i =v i ) m Social optimality: the bidder who value the good the most gets it!

b i =v i is the highest bid bids bibi bkbk bhbh bnbn Bidding more than v i is not convenient U i =v i -b k >v i -b i =0 bids b i ’>b i bkbk bhbh bnbn U i ’=v i -b k

b i =v i is the highest bid bids bibi bkbk bhbh bnbn Bidding less than v i is not convenient (may be unconvenient) U i =v i -b k >v i -b i =0 bids b i ’<b i bkbk bhbh bnbn U i ’=0

b i =v i is not the highest bid bids bkbk bibi bhbh bnbn Bidding more than v i is not convenient (may be unconvenient) U i =0 bids b i ’>b i bkbk bhbh bnbn U i ’=v i -b k <v i -b i =0

b i =v i is not the highest bid bids bkbk bibi bhbh bnbn Bidding less than v i is not convenient U i =0 bids b i ’<b i bkbk bhbh bnbn U i ’=0

Seller revenue r N bidders r Values are independent random values between 0 and 1 r Expected i th largest utility is (N+1-i)/(N+1) r Expected seller revenue is (N-1)/(N+1)

1 st price auction r Player with the highest bid gets the good and pays a price equal to her/his bid r Being truthful is not a dominant strategy anymore! r How to study it?

1 st price auction r Assumption: for each player the other values are i.i.d. random variables between 0 and 1 m to overcome the fact that utilities are unknown r Player i’s strategy is a function s() mapping value v i to a bid b i m s() strictly increasing, differentiable function  0≤s(v)≤v  s(0)=0  We investigate if there is a strategy s() common to all the players that leads to a Nash equilibrium

1 st price auction r Assumption: for each player the other values are i.i.d. random variables between 0 and 1 r Player i’s strategy is a function s() mapping value v i to a bid b i  Expected payoff of player i if all the players plays s():  U i (s,…s,…s) = v i N-1 (v i -s(v i )) prob. i wins i’s payoff if he/she wins

1 st price auction  Expected payoff of player i if all the players play s():  U i (s,…s,…s) = v i N-1 (v i -s(v i ))  What if i plays a different strategy t()?  If all players playing s() is a NE, then :  U i (s,…s,…s) = v i N-1 (v i -s(v i )) ≥ v i N-1 (v i -t(v i )) = = U i (s,…t,…s)  Difficult to check for all the possible functions t() different from s()  Help from the revelation principle

The Revelation Principle  All the strategies are equivalent to bidder i supplying to s() a different value of v i s() vivi bibi t() vivi bi'bi' s() vi'vi' bi'bi'

1 st price auction  Expected payoff of player i if all the players plays s():  U i (v 1,…v i,…v N ) = U i (s,…s,…s) = v i N-1 (v i -s(v i ))  What if i plays a different strategy t()?  By the revelation principle:  U i (s,…t,…s) = U i (v 1,…v,…v N ) = v N-1 (v i -s(v))  If v i N-1 (v i -s(v i )) ≥ v N-1 (v i -s(v)) for each v (and for each v i )  Then all players playing s() is a NE

1 st price auction  If v i N-1 (v i -s(v i )) ≥ v N-1 (v i -s(v)) for each v (and for each v i )  Then all players playing s() is a NE  f(v)=v i N-1 (v i -s(v i )) - v N-1 (v i -s(v)) is minimized for v=v i  f’(v)=0 for v=v i,  i.e. (N-1) v i N-2 (v i -s(v)) + v i N-1 s’(v i ) = 0 for each v i  s’(v i ) = (N-1)(1 – s(v i )/v i ), s(0)=0  Solution: s(v i )=(N-1)/N v i

1 st price auction r All players bidding according to s(v) = (N-1)/N v is a NE r Remarks m They are not truthful m The more they are, the higher they should bid r Expected seller revenue m ((N-1)/N) E[v max ] = ((N-1)/N) (N/(N+1)) = (N- 1)/(N+1) m Identical to 2 nd price auction! m A general revenue equivalence principle

Outline r Preliminaries m Auctions m Matching markets r Possible approaches to ads pricing r Google mechanism r References m Easley, Kleinberg, "Networks, Crowds and Markets", ch.9,10,15

Matching Markets v 11, v 21, v 31 v 12, v 22, v 32 How to match a set of different goods to a set of buyers with different evaluations v ij : value that buyer j gives to good i goods buyers

Matching Markets , 4, 2 8, 7, 6 7, 5, 2 How to match a set of different goods to a set of buyers with different evaluations p 1 =2 p 2 =1 p 3 =0 Which goods buyers like most? Preferred seller graph

Matching Markets , 4, 2 8, 7, 6 7, 5, 2 p 1 =2 p 2 =1 p 3 =0 Which goods buyers like most? Preferred seller graph r Given the prices, look for a perfect matching on the preferred seller graph r There is no such matching for this graph

Matching Markets , 4, 2 8, 7, 6 7, 5, 2 p1=3p1=3 p 2 =1 p 3 =0 Which goods buyers like most? Preferred seller graph r But with different prices, there is

Matching Markets , 4, 2 8, 7, 6 7, 5, 2 p1=3p1=3 p 2 =1 p 3 =0 Which goods buyers like most? Preferred seller graph r But with different prices, there is r Such prices are market clearing prices

Market Clearing Prices r They always exist m And can be easily calculated if valuations are known r They are socially optimal in the sense that they maximize the sum of all the payoffs in the network (both sellers and buyers)

Outline r Preliminaries m Auctions m Matching markets r Possible approaches to ads pricing r Google mechanism r References m Easley, Kleinberg, "Networks, Crowds and Markets", ch.9,10,15

Ads pricing v1v1 v2v2 v3v3 How to rank ads from different companies v i : value that company i gives to a click Ads positions companies r1r1 r2r2 r3r3 r i : click rate for an ad in position i (assumed to be independent from the ad and known a prior i)

Ads pricing as a matching market v 1 r 1, v 1 r 2, v 1 r 3 v i : value that company i gives to a click Ads positions companies r1r1 r2r2 r3r3 r i : click rate for an ad in position i (assumed to be independent from the ad and known a prior i) v 2 r 1, v 2 r 2, v 2 r 3 v 3 r 1, v 3 r 2, v 3 r 3 r Problem: Valuations are not known! r … but we could look for something as 2 nd price auctions

The VCG mechanism r The correct way to generalize 2 nd price auctions to multiple goods r Vickrey-Clarke-Groves r Every buyers should pay a price equal to the social value loss for the others buyers m Example: consider a 2 nd price auction with v 1 >v 2 >…v N With 1 present the others buyers get 0 Without 1, 2 would have got the good with a value v 2 then the social value loss for the others is v 2

The VCG mechanism r The correct way to generalize 2 nd price auctions to multiple goods r Vickrey-Clarke-Groves r Every buyers should pay a price equal to the social value loss for the others buyers m If V B S is the maximum total valuation over all the possible perfect matchings of the set of sellers S and the set of buyers B, m If buyer j gets good i, he/she should be charged V B-j S - V B-j S-i

VCG example v 1 =3 v i : value that company i gives to a click Ads positions companies r 1 =10 r 2 =5 r 3 =2 r i : click rate for an ad in position i (assumed to be independent from the ad and known a prior i) v 2 =2 v 3 =1

VCG example , 15, 6 Ads positions companies 20, 10, 4 10, 5, 2

VCG example , 15, 6 Ads positions companies 20, 10, 4 10, 5, 2 r This is the maximum weight matching r 1 gets 30, 2 gets 10 and 3 gets 2

VCG example , 15, 6 Ads positions companies 20, 10, 4 10, 5, 2 r If 1 weren’t there, 2 and 3 would get 25 instead of 12, r Then 1 should pay 13

VCG example , 15, 6 Ads positions companies 20, 10, 4 10, 5, 2 r If 2 weren’t there, 1 and 3 would get 35 instead of 32, r Then 2 should pay 3

VCG example , 15, 6 Ads positions companies 20, 10, 4 10, 5, 2 r If 3 weren’t there, nothing would change for 1 and 2, r Then 3 should pay 0

The VCG mechanism r Every buyers should pay a price equal to the social value loss for the others buyers m If V B S is the maximum total valuation over all the possible perfect matchings of the set of sellers S and the set of buyers B, m If buyer j gets good i, he/she should be charged V B-j S - V B-j S-i r Under this price mechanism, truth-telling is a dominant strategy

Outline r Preliminaries m Auctions m Matching markets r Possible approaches to ads pricing r Google mechanism r References m Easley, Kleinberg, "Networks, Crowds and Markets", ch.9,10,15

Google’s GSP auction r Generalized Second Price r Once all the bids are collected b 1 >b 2 >…b N r Company i pays b i+1 r In the case of a single good (position), GSP is equivalent to a 2 nd price auction, and also to VCG r But why Google wanted to implement something different???

GSP properties r Truth-telling may not be an equilibrium

GSP example v 1 =7 v i : value that company i gives to a click Ads positions companies r 1 =10 r 2 =4 r 3 =0 r i : click rate for an ad in position i (assumed to be independent from the ad and known a prior i) v 2 =6 v 3 =1 r If each player bids its true evaluation, 1 gets a payoff equal to 10 r If 1 bids 5, 1 gets a payoff equal to 24

GSP properties r Truth-telling may not be an equilibrium r There is always at least 1 NE maximizing total advertiser valuation

GSP example v 1 =7 v i : value that company i gives to a click Ads positions companies r 1 =10 r 2 =4 r 3 =0 r i : click rate for an ad in position i (assumed to be independent from the ad and known a prior i) v 2 =6 v 3 =1 r Multiple NE m 1 bids 5, 2 bids 4 and 3 bids 2 m 1 bids 3, 2 bids 5 and 3 bids 1

GSP properties r Truth-telling may not be an equilibrium r There is always at least 1 NE maximizing total advertiser valuation r Revenues can be higher or lower than VCG m Attention: the revenue equivalence principle does not hold for auctions with multiple goods! m Google was targeting higher revenues… m … not clear if they did the right choice.

GSP example v 1 =7 Ads positions companies r 1 =10 r 2 =4 r 3 =0 v 2 =6 v 3 =1 r Multiple NE  1 bids 5, 2 bids 4, 3 bids 2  google’s revenue=48  1 bids 3, 2 bids 5, 3 bids 1  google’s revenue=34 r With VCG, google’s revenue=44

Other issues r Click rates are unknown and depend on the ad! m Concrete risk: low-quality advertiser bidding high may reduce the search engine’s revenue m Google’s solution: introduce and ad-quality factor taking into account actual click rate, relevance of the page and its ranking Google is very secretive about how to calculate it => the market is more opaque r Complex queries, nobody paid for m Usually engines extrapolate from simpler bids