Multivariate Genetic Analysis (Introduction) Frühling Rijsdijk Wednesday March 8, 2006.

Slides:



Advertisements
Similar presentations
Multivariate Twin Analysis
Advertisements

Bivariate analysis HGEN619 class 2007.
Fitting Bivariate Models October 21, 2014 Elizabeth Prom-Wormley & Hermine Maes
The use of Cholesky decomposition in multivariate models of sex-limited genetic and environmental effects Michael C. Neale Virginia Institute for Psychiatric.
Multivariate Mx Exercise D Posthuma Files: \\danielle\Multivariate.
Estimating “Heritability” using Genetic Data David Evans University of Queensland.
Factor analysis Caroline van Baal March 3 rd 2004, Boulder.
Path Analysis Danielle Dick Boulder Path Analysis Allows us to represent linear models for the relationships between variables in diagrammatic form.
Multivariate Analysis Nick Martin, Hermine Maes TC21 March 2008 HGEN619 10/20/03.
Introduction to Multivariate Analysis Frühling Rijsdijk & Shaun Purcell Twin Workshop 2004.
Multivariate Genetic Analysis: Introduction(II) Frühling Rijsdijk & Shaun Purcell Wednesday March 6, 2002.
Bivariate Model: traits A and B measured in twins cbca.
Developmental models. Multivariate analysis choleski models factor models –y =  f + u genetic factor models –P j = h G j + c C j + e E j –common pathway.
ACDE model and estimability Why can’t we estimate (co)variances due to A, C, D and E simultaneously in a standard twin design?
Univariate Analysis in Mx Boulder, Group Structure Title Type: Data/ Calculation/ Constraint Reading Data Matrices Declaration Assigning Specifications/
Multivariate Analysis Hermine Maes TC19 March 2006 HGEN619 10/20/03.
David M. Evans Sarah E. Medland Developmental Models in Genetic Research Wellcome Trust Centre for Human Genetics Oxford United Kingdom Twin Workshop Boulder.
Univariate Analysis Hermine Maes TC19 March 2006.
Gene x Environment Interactions Brad Verhulst (With lots of help from slides written by Hermine and Liz) September 30, 2014.
Path Analysis Frühling Rijsdijk SGDP Centre Institute of Psychiatry King’s College London, UK.
Mx Practical TC18, 2005 Dorret Boomsma, Nick Martin, Hermine H. Maes.
Introduction to Multivariate Genetic Analysis Kate Morley and Frühling Rijsdijk 21st Twin and Family Methodology Workshop, March 2008.
Path Analysis Frühling Rijsdijk. Biometrical Genetic Theory Aims of session:  Derivation of Predicted Var/Cov matrices Using: (1)Path Tracing Rules (2)Covariance.
Multivariate Threshold Models Specification in Mx.
Path Analysis HGEN619 class Method of Path Analysis allows us to represent linear models for the relationship between variables in diagrammatic.
Institute of Psychiatry King’s College London, UK
Introduction to Multivariate Genetic Analysis (2) Marleen de Moor, Kees-Jan Kan & Nick Martin March 7, 20121M. de Moor, Twin Workshop Boulder.
Cholesky decomposition May 27th 2015 Helsinki, Finland E. Vuoksimaa.
Univariate modeling Sarah Medland. Starting at the beginning… Data preparation – The algebra style used in Mx expects 1 line per case/family – (Almost)
Practical SCRIPT: F:\meike\2010\Multi_prac\MultivariateTwinAnalysis_MatrixRaw.r DATA: DHBQ_bs.dat.
F:\sarah\fri_MV. Multivariate Linkage and Association Sarah Medland and Manuel Ferreira -with heavy borrowing from Kate Morley and Frühling Rijsdijk.
Family/Kinship Studies Compare individuals with different degrees of genetic relatedness on a specific characteristic or behavior – Exs: adoption studies,
Achievement & Ascription in Educational Attainment Genetic & Environmental Influences on Adolescent Schooling François Nielsen.
Univariate Analysis Hermine Maes TC21 March 2008.
Mx modeling of methylation data: twin correlations [means, SD, correlation] ACE / ADE latent factor model regression [sex and age] genetic association.
Mx Practical TC20, 2007 Hermine H. Maes Nick Martin, Dorret Boomsma.
Frühling Rijsdijk & Kate Morley
Categorical Data Frühling Rijsdijk 1 & Caroline van Baal 2 1 IoP, London 2 Vrije Universiteit, A’dam Twin Workshop, Boulder Tuesday March 2, 2004.
Introduction to Genetic Theory
Introduction to Multivariate Genetic Analysis Danielle Posthuma & Meike Bartels.
Developmental Models/ Longitudinal Data Analysis Danielle Dick & Nathan Gillespie Boulder, March 2006.
QTL Mapping Using Mx Michael C Neale Virginia Institute for Psychiatric and Behavioral Genetics Virginia Commonwealth University.
March 7, 2012M. de Moor, Twin Workshop Boulder1 Copy files Go to Faculty\marleen\Boulder2012\Multivariate Copy all files to your own directory Go to Faculty\kees\Boulder2012\Multivariate.
Categorical Data HGEN
Extended Pedigrees HGEN619 class 2007.
Invest. Ophthalmol. Vis. Sci ;57(1): doi: /iovs Figure Legend:
Genetic simplex model: practical
Multivariate Analysis
Bivariate analysis HGEN619 class 2006.
Univariate Twin Analysis
Introduction to Multivariate Genetic Analysis
Re-introduction to openMx
Heterogeneity HGEN619 class 2007.
Longitudinal Analysis
Univariate Analysis HGEN619 class 2006.
MRC SGDP Centre, Institute of Psychiatry, Psychology & Neuroscience
Path Analysis Danielle Dick Boulder 2008
Univariate modeling Sarah Medland.
Pak Sham & Shaun Purcell Twin Workshop, March 2002
(Re)introduction to Mx Sarah Medland
Longitudinal Modeling
Sarah Medland faculty/sarah/2018/Tuesday
\nathan\RaterBias.
Lucía Colodro Conde Sarah Medland & Matt Keller
Bivariate Genetic Analysis Practical
Multivariate Genetic Analysis
Multivariate Genetic Analysis: Introduction
Rater Bias & Sibling Interaction Meike Bartels Boulder 2004
Presentation transcript:

Multivariate Genetic Analysis (Introduction) Frühling Rijsdijk Wednesday March 8, 2006

Multivariate Twin Analyses l Goal: to understand what factors make sets of variables correlate or co-vary l Two or more traits can be correlated because they share common genetic or common environmental influences (C or E) l With twin data on multiple traits it’s possible to partition the covariation into it’s genetic and environmental components

Example 1 How can we explain the association? - Additive Genetic effects (r g ) - Shared environment (r c ) - Non-shared environment (r e ) Kuntsi et al. Neuropsychiatric Genetics, Interested in reason for covariance / correlation between phenotypes, e.g. IQ and ADHD

Observed Cov matrices: 4×4 Twin1 p1 p2 Within-Twin Covariances Var P1 Cov P1- P2 Var P2 Twin2 p1 p2 Within-Twin CovariancesCross-Twin Covariances Within P1 Cross TraitsWithin P2 Twin1 p1 p2 Twin2 p1 p2 Cov P1- P2 Var P2 Var P1 Cross Traits

Twin 1 Phenotype 1 Twin 1 Phenotype 2 A1 A2 C1 C2 E1 E2 a 11 a 22 a 21 c 11 c 22 c 21 e 11 e 21 e 22

Twin 1 Phenotype 1 Twin 1 Phenotype 2 A1 A2 C1 C2 E1 E2 a 11 a 22 a 21 c 11 c 22 c 21 e 11 e 21 e 22 Twin 2 Phenotype 1 Twin 2 Phenotype 2 A1 A2 C1 C2 E1 E2 a 11 a 22 a 21 c 11 c 22 c 21 e 11 e 21 e 22 mz=1; dz=.5 1 1

Cholesky Decomposition: Path Tracing

Within-Twin Covariances Twin1 P2 Twin1 p1 p2 A 1 A 2 a 11 P1 1 P2 1 a 22 a 21 P1 a 11 2 a a 21 2 a 11 a 21

Within-Twin Covariances Twin1 P2 Twin1 p1 p2 P1 C 1 C 2 c 11 P1 1 P2 1 c 22 c 21 a 11 2 a a 21 2 a 11 a 21 + c c c c 11 c 21

Within-Twin Covariances Twin1 P2 a 11 2 a a 21 2 Twin1 p1 p2 a 11 a 21 P1 P1 1 P2 1 E 1 E 2 e 11 e 21 e 22 + c e e 11 e 21 + c 11 c 21 + e e c c 21 2

Cross-Twin Covariances Twin2 P2 1/.5a /.5a /.5a 21 2 Twin1 p1 p2 1/.5a 11 a 21 P1 1/.5 A 1 A 2 a 11 P1 1 P2 1 a 22 a 21 A 1 A 2 a 11 P1 2 P2 2 a 22 a 21

Cross-Twin Covariances Twin2 P2 1/.5a /.5a /.5a 21 2 Twin1 p1 p2 1/.5a 11 a 21 P1 + c c 11 c 21 + c c C 1 C 2 c 11 P1 1 P2 1 c 22 c 21 C 1 C 2 c 11 P1 2 P2 2 c 22 c 21

Predicted Model Twin1 p1 p2 Within-Twin Covariances Var P1 Cov P1- P2 Var P2 Twin2 p1 p2 Within-Twin CovariancesCross-Twin Covariances Within P1 Cross TraitsWithin P2 Twin1 p1 p2 Twin2 p1 p2 Cov P1- P2 Var P2 Var P1 Var of P1 and P2 same across twins and zygosity groups

Predicted Model Twin1 p1 p2 Within-Twin Covariances Var P1 Cov P1- P2 Var P2 Twin2 p1 p2 Within-Twin CovariancesCross-Twin Covariances Within Trait 1 Cross TraitsWithin Trait 2 Twin1 p1 p2 Twin2 p1 p2 Cov P1- P2 Var P2 Var P1 Cov P1 - P2 same across twins and zygosity groups

Predicted Model Twin1 p1 p2 Within-Twin Covariances Var P1 Cov P1- P2 Var P2 Twin2 p1 p2 Within-Twin CovariancesCross-Twin Covariances Within P1 Cross TraitsWithin P2 Twin1 p1 p2 Twin2 p1 p2 Cov P1- P2 Var P2 Var P1 Cross Twin Cov within each trait, different for MZ and DZ

Predicted Model Twin1 p1 p2 Within-Twin Covariances Var P1 Cov P1- P2 Var P2 Twin2 p1 p2 Within-Twin CovariancesCross-Twin Covariances Within P1 Cross TraitsWithin P2 Twin1 p1 p2 Twin2 p1 p2 Cov P1- P2 Var P2 Var P1 Cross Twin - Cross trait, different for MZ and DZ

Within-Twin Covariances Twin1 p1 p2 Twin2 p1 p2 Twin 1 p2 p1 Twin 2 p2 p MZ Within-Twin CovariancesCross-Twin Covariances Within-Twin Covariances Twin1 p1 p2 Twin2 p1 p2 Twin 1 p2 p1 Twin 2 p2 p DZ Within-Twin CovariancesCross-Twin Covariances

Within-Twin Covariances Twin1 p1 p2 Twin2 p1 p2 Twin 1 p2 p1 Twin 2 p2 p MZ Within-Twin CovariancesCross-Twin Covariances Within-Twin Covariances Twin1 p1 p2 Twin2 p1 p2 Twin 1 p2 p1 Twin 2 p2 p DZ Within-Twin CovariancesCross-Twin Covariances

Within-Twin Covariances Twin1 p1 p2 Twin2 p1 p2 Twin 1 p2 p1 Twin 2 p2 p MZ Within-Twin CovariancesCross-Twin Covariances Within-Twin Covariances Twin1 p1 p2 Twin2 p1 p2 Twin 1 p2 p1 Twin 2 p2 p DZ Within-Twin CovariancesCross-Twin Covariances

Summary Within-individual cross-trait covariance implies common etiological influences Cross-twin cross-trait covariance implies that these common etiological influences are familial Whether these common familial influences are genetic or environmental, is reflected in the MZ/DZ ratio of the cross-twin cross-traits covariances

Cholesky Decomposition: Specification in Mx

Mx: Parameter Matrices #define nvar 2 Begin Matrices; X lower nvar nvar free! Genetic coefficients Y lower nvar nvar free! C coefficients Z lower nvar nvar free! E coefficients G Full 1 nvar free! means End Matrices; Begin Algebra; A=X*X’;! Gen var/cov C=Y*Y’;! C var/cov E=Z*Z’; ! E var/cov P=A+C+E End Algebra;

Within-Twin Covariances Path Tracing * or ‘Star’ Matrix Multiplication P1P2 a 22 a 11 A 1 A 2 a 21 X LOWER 2  2 P1 P2 A1 A2 a 11 0 a 21 a 22

 P =  A +  C +  E By rule of matrix addition:

Within-Traits (diagonals): P 11 -P 12 =.5 a 11 2 P 21 -P 22 =.5 a a 21 2 Cross-Traits: P 11 -P 22 =.5 a 11 a 21 P 21 -P 12 =.5 a 21 a 11 Cross-Twins Covariances, Genetic effects (DZ).5 A 1 A 2 a 11 P11P21 a 22 a 21 A 1 A 2 a 11 P12P22 a 22 a 21 Twin 1Twin 2 Path Tracing Kronecker Product

Cross-Twins Covariances, Genetic effects (MZ) 11 A 1 A 2 a 11 P11P21 a 22 a 21 A 1 A 2 a 11 P12P22 a 22 a 21 Twin 1Twin 2

Cross-Twins Covariances, C effects (MZ and DZ) 11 C 1 C 2 c 11 P11P21 c 22 c 21 C 1 C 2 c 11 P12P22 c 22 c 21 Twin 1Twin 2

Covariance Model for Twin pairs CovarianceA+C+E| A+C _ A+C| A+C+E / CovarianceA+C+E| _ A+C+E / MZ DZ

Standardized Estimates

Correlated Factors Solution

Covariances to Correlations In matrix form:

Genetic Correlations

Specification in Mx Matrix Function in Mx: R = \stnd (A); R = \sqrt( I. A )˜ * A * \sqrt( I. A )˜; Where I is an Identity matrix :  2 A  2 A22 And I.A =

Interpretation §High Genetic correlation: large overlap in genetic effects on the two traits §Does it mean that the phenotypic correlation between the traits is largely due to genetic effects? l No, the substantive importance of a particular r g depends both on the value of the correlation and the value of the A paths, i.e. the heritabilities of both traits.

A 1 A 2 h2h2 P1P2 h2h2 rgrg (  h 2 p1 * r g *  h 2 p2 ) / r PH ( .63 * * .33) / =.8357

Interpretation For Example, consider a phenotypic correlation of 0.40 With  h 2 p1 =.7 and  h 2 p2 =.6 with rg =.3.19 (49%) of the phenotypic correlation can be attributed to additive genetic effects. With  h 2 p1 =.2 and  h 2 p2 =.4 with rg =.8.20 (49%) of the phenotypic correlation can be attributed to additive genetic effects. Weakly heritable traits can still have a large portion of their correlation attributable to genetic effects.

More variables…… Twin 1 Phenotype 1 Twin 1 Phenotype 2 A1 A2 C1 C2 E1 E2 a 11 a 22 a 21 c 11 c 22 c 21 e 11 e 21 e 22 Twin 1 Phenotype 3 A3C3 a 33 E3 e 33 c 33 c 31 a 23 c 23 a 31 e 31 e 23

More variables…… Twin 1 Phenotype 1 Twin 1 Phenotype 2 A1A1 A2A2 C1C1 C2C2 E1 E2 a 11 a 22 a 21 c 11 c 22 c 21 e 11 e 21 e 22 Twin 1 Phenotype 3 A3A3 C3C3 a 33 E3 e 33 c 33 c 31 a 23 c 23 a 31 e 31 e 23 e 22 Twin 2 Phenotype 1 Twin 2 Phenotype 2 A1A1 A2A2 C1C1 C2C2 E1 E2 a 11 a 22 a 21 c 11 c 22 c 21 e 11 e 21 e 22 Twin 2 Phenotype 3 A3A3 C3C3 a 33 E3 e 33 c 33 c 31 a 23 c 23 a 31 e 31 e 23 e 22

Mx: Parameter Matrices #define nvar 3 Begin Matrices; X lower nvar nvar free! Genetic coefficients Y lower nvar nvar free! C coefficients Z lower nvar nvar free! E coefficients G Full 1 nvar free! means End Matrices; Begin Algebra; A=X*X’;! Gen var/cov C=Y*Y’;! C var/cov E=Z*Z’; ! E var/cov P=A+C+E End Algebra;

X LOWER 3  3 A1 A2 A3 a a 21 a 22 0 a 31 a 32 a 33 Y LOWER 3  3 C1 C2 C3 c c 21 c 22 0 c 31 c 32 c 33 Z LOWER 3  3 E1 E2 E3 e e 21 e 22 0 e 31 e 32 e 33