Principle of moments. Turning forces Students need to be introduced to the idea of turning forces, by giving examples of levers and leverage. The idea.

Slides:



Advertisements
Similar presentations
S3 : Stadium Roof Design – Cantilever Roof Design Experiment
Advertisements

30 April 2015 Unit 5: Turning Effect of Forces Background: Walking the tightrope pg 82 Discover PHYSICS for GCE ‘O’ Level.
Pressure and Moments.
Balanced Forces.
MOMENTS Noadswood Science, MOMENTS To be able to calculate moments Wednesday, May 20, 2015.
3) Calculate the spanner’s turning effect in newton metres. (2 marks)
The Turning Effect of Forces You should be able to: state what the centre of gravity of an object is. describe a simple experiment to determine the centre.
TorqueTorque A turning force. Torque (T) – a turning force Torque depends on the linear force applied and the distance from the fulcrum (pivot point)
IGCSE textbook Chapter 5, p. 42
Centre of Gravity & Moments Stability Two factors determine the stability of an object – Centre of Gravity – Base If the Centre of Gravity of an object.
EDEXCEL IGCSE PHYSICS 1-5 The Turning Effect of Forces
Lesson 1: Force and Pressure
Chapter 5: Turning effect of forces
Turning forces and Centre of Gravity
Describe moment of force or torque as moment = force × perpendicular distance from pivot to the line of action of force;
MOMENTS What is moments? A force can cause many things to move or stop. When a force causes an object to turn, this turning effect is called moments.
R F F F F MOMENT of FORCE = F x r.
AQUINAS DIOCESAN GRAMMAR Moments Double Award - Physics calculate the moment of a force as force times perpendicular distance form the pivot describe.
What have you learnt?  moment of a force = F x d  The Principle of Moments states that when a body is in equilibrium, the sum of clockwise moments about.
Moments LO: be able to calculate moments 07/03/2016 Write down everything you can remember about moments from Yr 9.
Moments In order to understand Mechanisms better, we need to understand pivots, moments and equilibrium. Boom Counter balance weight.
Loads & Forces. L1 L2 F2 F1 F1 x L1 = F2 x L2 F1 = (L2 x F2) L1 Formula for calculating load.
Turning Forces. You know that forces are a push or pull A turning force is another force you come across in everyday life Opening a Coke can, turning.
What do these objects have in common? LO: Understand how things balance What do these objects have in common? Use moments worksheet.
Mechanisms MOMENTS AND LEVERS.
TORQUE The turning effect of a force. Torque Which way will the door turn? Rachel Julia.
24/11/2017 Pressure and Moments.
Levers , Moments and Centre of Gravity.
A LEVEL PHYSICS Year 1 Introducing Moments A* A B C
Learning Objective and Success Criteria
KS3 Physics 9L Pressure and Moments.
What is pressure? Why would a lady in high heels standing on your foot hurt more than an elephant standing on your foot? The elephant has a larger.
KS3 Physics 9L Moments.
Moments.
Force and Work.
Levers & Moments.
TURNING EFFECT OF FORCES.
PRESSURE AND MOMENTS In This Topic We Will Learn About:
Levers & Moments.
EDEXCEL IGCSE / CERTIFICATE IN PHYSICS 1-5 The Turning Effect of Forces ’
Chapter 35 Moments, Levers & Centre of Gravity
Moment : the turning effect of a force about a pivot
Moment of a Force.
Starter Questions Copy the diagram and label the forces
TURNING EFFECT OF FORCES
Turning Forces and Centre of Gravity
AQA GCSE Physics 3-1a Turning Forces Moments & Stability
Moments – Learning Outcomes
28/02/2019 Dog-nap.
EDEXCEL IGCSE PHYSICS 1-5 The Turning Effect of Forces
Moment of a Force.
Levers A lever is a rigid body free to rotate about a fixed point called a fulcrum.
Moments Y9.
TURNING EFFECT OF FORCES
G8 Topic 9 Forces in Action
Moments.
Moment of a Force.
Balanced Forces.
26/08/2019 Pressure and Moments W Richards Worthing High School.
Torque & Equilibrium.
Presentation transcript:

Principle of moments

Turning forces Students need to be introduced to the idea of turning forces, by giving examples of levers and leverage. The idea that the turning force depends on the moment of the force where MOMENT OF A FORCE = FORCE(N) X PERPENDICULAR DISTANCE FROM FULCRUM (m) ( or the point in question )

Moment Moment = Force (N) x Distance (cm or m). The moment of a force is given by the relationship: Moments are measured in Newton centimetre (Ncm) or Newton metre (Nm). moment Fxd

Students should be able to be able to calculate the moment in different situations, (initially for one force) from diagrams supplied, giving the correct unit and whether the moment is acting in a clockwise or anticlockwise direction. There are good examples of powerpoints such as ABSORB PHYSICS. Students should be able to explain how and why the turning effect changes as a cyclist pushes against a pedal. (The perpendicular distance alters).

Moment Moment = Force (N) x Distance (cm or m). The moment of a force is given by the relationship: Moments are measured in Newton centimetre (Ncm) or Newton metre (Nm). moment Fxd

Students should also be able to work out the resultant moment acting in more complicated examples where several turning forces are acting. Students can then state if the system is in equilibrium, or whether it will rotate in a clockwise or anticlockwise direction.

pivot 500 N 0.5 m Gina weighs 500 N and stands on one end of a seesaw. She is 0.5 m from the pivot. What moment does she exert? moment = 500 x 0.5 = 250 Nm Click for solution Moments calculation

Possible investigations Using a suspended meter ruler to find the mass/weight of an object by applying the principle of moments. Students could take five sets of readings and calculate an average, ignoring any anomalous results. They could check the mass and calculate their % error

Principle of moments The green girl exerts an anti- clockwise moment equal to... her weight x distance from pivot. The yellow girl exerts a clockwise moment equal to... her weight x distance from pivot. pivot

If the two moments are equal then the seesaw is balanced. This is known as the principle of moments. When balanced Total clockwise moment = total anti-clockwise moment “c.m.” = “a-c.m.” Principle of moments pivot

Finding the mass of a meter ruler by suspending it around the 25cm mark, with a piece of string and suspending a mass of similar size to the ruler near the zero mark. The string can be adjusted until the ruler is balanced. This experiment could be used introduce the concept of centre of mass.

Why don’t cranes fall over? Tower cranes are essential at any major construction site. load arm trolley loading platform tower Concrete counterweights are fitted to the crane’s short arm. Why are these needed for lifting heavy loads? counterweight

Once students understand the idea of centre of mass, they could use a plumbline to find the centre of mass of a simple lamina, such as a cardboard map of Britain. The lamina is freely suspended so that it can rotate from at least three different places. A line is drawn along the plumbline on the lamina from each point of suspension. The centre of mass will be the point where all the lines cross.

Why don’t cranes fall over? Using the principle of moments, when is the crane balanced? moment of = moment of load counterweight If a N counterweight is 3 metres from the tower, what weight can be lifted when the loading platform is 6 metres from the tower? 6 m6 m 3 m3 m N ?

Various toys, and items such a Bunsen, racing car, lifeboat and ball could be used to demonstrate the importance of a low centre of gravity and a wide base in certain situations. The terms stable, unstable and neutral equilibrium could be explained