GLAST Observations of Supernova Remnants and Pulsar Wind Nebulae Bryan Gaensler The University of Sydney / Harvard-Smithsonian Center for Astrophysics.

Slides:



Advertisements
Similar presentations
Many different acceleration mechanisms: Fermi 1, Fermi 2, shear,... (Fermi acceleration at shock: most standard, nice powerlaw, few free parameters) main.
Advertisements

(2) Profile of the Non-Thermal Filaments of SNRs =>High Energy Particle Acceleration =>High Energy Particle Acceleration In all the SNRs & GC Non Thermal.
The Galactic diffuse emission Sabrina Casanova, MPIK Heidelberg XXth RENCONTRES DE BLOIS 18th - 23rd May 2008, Blois.
Stephen C.-Y. Ng HKU. Outline What are pulsar wind nebulae? Physical properties and evolution Why study PWNe? Common TeV sources, particle accelerators.
Magnetic Fields in Supernova Remnants and Pulsar-Wind Nebulae S.P. Reynolds et al. Martin, Tseng Chao Hsiung 2013/12/18.
Astroparticle physics 2. The Milky Way interstellar medium and cosmic-rays Alberto Carramiñana Instituto Nacional de Astrofísica, Óptica y Electrónica.
Pulsar Wind Nebulae with LOFAR Jason Hessels (ASTRON/UvA) Astrophysics with E-LOFAR - Hamburg - Sept. 16 th -19 th, 2008.
2009 July 8 Supernova Remants and Pulsar Wind Nebulae in the Chandra Era 1 Modeling the Dynamical and Radiative Evolution of a Pulsar Wind Nebula inside.
Supernova HE Francesco Giordano University and INFN Bari Gamma 400 Workshop.
Diffuse Gamma-Ray Emission Su Yang Telescopes Examples Our work.
TeV Unidentified Sources Workshop - PSU (4-5 June 2008) Patrick Slane (CfA) High Energy Emission from Supernova Remnants.
Neutron Star Environment: from Supernova Remnants to Pulsar Wind Nebulae Stephen C.-Y. Ng McGill University Special thanks to Pat Slane for some materials.
IR Shell Surrounding the Pulsar Wind Nebula G SNRs and PWNe in the Chandra Era Boston, July 8, 2009 Tea Temim (CfA, Univ. of MN) Collaborators:
World Cup of VHE Gamma Rays J-Dog, for the SNR/PWN Pack.
1/32 X-ray Observations of the Dark Particle Accelerators Hironori Matsumoto (Kyoto Univ.)
Observational evidences of particle acceleration at SNRs Aya Bamba (RIKEN, Japan) and Suzaku team Suzaku Chandra.
GLAST Workshop (Cambridge, MA, 6/21/07) Patrick Slane (CfA) Supernova Remnants and GLAST.
Cosmic Rays Discovery of cosmic rays Local measurements Gamma-ray sky (and radio sky) Origin of cosmic rays.
Magnetic Fields in Supernova Remnants and Pulsar-Wind Nebulae 2013/12/18 Speaker : Yu-Hsun Cheng Professor: Yosuke Mizuno.
Outline: Introduction into the problem Status of the identifications Summary Identification of Very high energy gamma-ray sources.
The VHE gamma-ray sky viewed with H.E.S.S. Werner Hofmann MPI für Kernphysik Heidelberg © Philippe Plailly HESS = High Energy Stereoscopic System.
Gamma-rays from SNRs and cosmic rays
Potential Neutrino Signals from Galactic  -Ray Sources Alexander Kappes, Christian Stegmann University Erlangen-Nuremberg Felix Aharonian, Jim Hinton.
The TeV view of the Galactic Centre R. Terrier APC.
COSPAR 2008, Montreal, 13 July Patrick Slane (CfA) X-ray Observations of Supernova Remnant Shocks.
Pulsar wind nebulae and their interaction with the environments Fangjun Lu 卢方军 Institute of High Energy Physics Chinese Academy of Sciences.
2009 Fermi Symposium, Washington, DC Patrick Slane (CfA) Supernova Remnants and Pulsar Wind Nebulae in the Fermi Era Collaborators: D. Castro S. Funk Y.
Fermi Symposium, Washington, DCVERITAS Observations of SNRs and PWNe B. Humensky, U. of Chicago Brian Humensky for the VERITAS Collaboration November 4,
Multi-Zone Modeling of Spatially Non-uniform Cosmic Ray Sources Armen Atoyan Concordia University, Montreal FAA60 Barcelona, 7 November 2012.
HESS J An exceptionally luminous TeV γ-ray SNR Stefan Ohm (DESY, Zeuthen) Peter Eger (MPIK, Heidelberg) On behalf of the H.E.S.S. collaboration.
The Millisecond Pulsar Contribution to the Rising Positron Fraction Christo Venter 34 th ICRC, The Hague, The Netherlands, 30 July – 6 August 2015 Collaborators:
Liverpool: 08-10/04/2013 Extreme Galactic Particle Accelerators The case of HESS J Stefan Ohm ( Univ. of Leicester), Peter Eger, for the H.E.S.S.
Introduction to the High Energy Astrophysics Introductory lecture.
Associations of H.E.S.S. VHE  -ray sources with Pulsar Wind Nebulae Yves Gallant (LPTA, U. Montpellier II, France) for the H.E.S.S. Collaboration “The.
The Universe >100 MeV Brenda Dingus Los Alamos National Laboratory.
Diffuse Emission and Unidentified Sources
A Pulsar Wind Nebula Origin for Luminous TeV Source HESS J Joseph Gelfand (NYUAD / CCPP) Eric Gotthelf, Jules Halpern (Columbia University), Dean.
Takayasu Anada ( anada at astro.isas.jaxa.jp), Ken Ebisawa, Tadayasu Dotani, Aya Bamba (ISAS/JAXA)anada at astro.isas.jaxa.jp Gerd Puhlhofer, Stefan.
Bremen, Germany Patrick Slane (CfA) COSPAR 2010: E19 Fermi Studies of Collaborators: D. Castro S. Funk Y. Uchiyama J. D. Gelfand O. C. de Jager A. Lemiere.
COSPAR 2008, Montreal, 18 July Patrick Slane (CfA) Pulsar Wind Nebulae Observations of.
Potential Neutrino Signals from Galactic  -Ray Sources Alexander Kappes, Christian Stegmann University Erlangen-Nuremberg Felix Aharonian, Jim Hinton.
Multi - emission from large-scale jets Fabrizio Tavecchio INAF – Osservatorio Astronomico di Brera.
Heidelberg 2008 Patrick Slane (CfA) Pulsar Wind Nebulae.
The impact of magnetic turbulence spectrum on particle acceleration in SNR IC443 I.Telezhinsky 1,2, A.Wilhelm 1,2, R.Brose 1,3, M.Pohl 1,2, B.Humensky.
SNRs and PWN in the Chandra Era – S. OrlandoBoston, USA – July 2009 S. Orlando 1, O. Petruk 2, F. Bocchino 1, M. Miceli 3,1 1 INAF - Osservatorio Astronomico.
Hiroyasu Tajima Stanford Linear Accelerator Center Kavli Institute for Particle Astrophysics and Cosmology October 26, 2006 GLAST lunch Particle Acceleration.
Don Ellison, NCSU, Future HE-Observatory, SNR/CR Working Group Magnetic Field Amplification in Astrophysical Shocks 1)There is convincing evidence for.
American Astronomical Society – Austin, TX (2008) Patrick Slane (CfA) In collaboration with: D. Helfand (Columbia) S. Reynolds (NC State) B. Gaensler (U.
Study of Young TeV Pulsar Wind Nebulae with a Spectral Evolution Model Shuta J. Tanaka & Fumio Takahara Theoretical Astrophysics Group Osaka Univ., Japan.
Recent Observations of Supernova Remnants with VERITAS Amanda Weinstein (Iowa State University) For the VERITAS Collaboration.
Multi-wavelength observations of PSR B during its 2010 periastron passage Masha Chernyakova(DIAS), Andrii Neronov (ISDC), Aous Abdo (GMU), Damien.
Koyama and Bamba Non-thermal Filaments from SNR. 1.Introduction of X-ray study of cosmic ray acceleration in SNRs 2.Chandra observation of SN Discussion.
PHYSICAL PROBLEMS INVOLVED
Gamma Rays from the Radio Galaxy M87
Observation of Pulsars and Plerions with MAGIC
HIGH ENERGY NEUTRINOS FROM PULSAR WIND NEBULAE
Fermi Collaboration Meeting
A large XMM-Newton project on SN 1006
Very High Energy Phenomena in the Universe
High Energy emission from the Galactic Center
Particle Acceleration in the Universe
Modelling of non-thermal radiation from pulsar wind nebulae
Diffusive Shock Acceleration
X-ray Observations of the Dark Particle Accelerators
SNRs as PeVatron candidates for CTA
Massive star clusters as Sources of Galactic Cosmic Rays (arXiv:1804
超新星遗迹 的XTP 观测模拟 南京大学 陈阳、周平、张潇.
SNR 的XTP 观测模拟 南京大学 陈阳、周平、张潇.
Kunihito Ioka & Mihoko M. Nojiri (KEK, Japan)
Presentation transcript:

GLAST Observations of Supernova Remnants and Pulsar Wind Nebulae Bryan Gaensler The University of Sydney / Harvard-Smithsonian Center for Astrophysics NASA / ESA / J. Hester / A. Loll / ASU

Introduction Supernova remnants (SNRs) & pulsar wind nebulae (PWNe) - broadband synchrotron emitters  shock acceleration of electrons to above ~10 14 eV  are ions accelerated also? origin of cosmic rays up to “the knee”? - accelerated particles propagated via turbulence, winds, jets - emission traces interaction with surrounding gas - nearby laboratory for understanding AGN,  -QSOs, clusters, GRBs GLAST + (radio  TeV): direct measure of acceleration sites, mechanisms Crab Nebula (Hester et al. 2002) radiooptical X-rays SNR 3C 391 (radio; Moffett & Reynolds 1994)PSR B (X-rays; Slane et al. 2006)

Particle Acceleration in SNRs Emerging class of young SNRs emitting synchrotron X-rays - e.g., SN 1006, G , Vela Jr., G , RCW 86 - direct evidence of electron acceleration up to ~ TeV (Koyama et al. 1995, 1997; Slane et al. 1999, 2001; Vink et al. 2006; Torii et al. 2006) G & Vela Jr.: now seen at E > 100 GeV (Muraishi et al. 2000; Aharonian et al. 2004, 2005; Katagiri et al. 2005) SN 1006 (X-rays; NASA/CXC/ Rutgers/J.Hughes et al.) Vela Jr. (TeV; Aharonian et al. 2005) G (TeV; Aharonian et al. 2006)

What Particles Are TeV Emitters? π 0 decay from p-p collisions (e.g., Enomoto et al. 2002; Aharonian et al. 2006) - would be direct evidence for proton acceleration to > 10 TeV Inverse Compton (IC) emission (e.g., Reimer & Pohl 2002; Lazendic et al. 2004) - Synch. e - scatter CMB, starlight, dust IR Spectroscopy can distinguish between p + & e - - Cerenkov sees only high-energy tail - GLAST will measure overall shape  -ray imaging resolves acceleration sites - π 0 decay should trace thermal X-rays - IC should trace non-thermal radio/X-rays GLAST targets: - SNRs with synch. X-rays / TeV (e.g., RCW 86) - SNRs interacting with molec. clouds (e.g., W28) LAT spectrum of G (Stefan Funk) G (TeV, X-rays; Aharonian et al. 2004) IC fit to G (Aharonian et al. 2006) GLAST (IC) GLAST (π 0 ) HESS

Broadband fitting from radio to VHE  -rays gives age, explosion energy, magnetic field, shock efficiency, E max,e-, E max,p+, etc. Probes of SNR Environments G (Ellison et al. 2001) For inverse Compton emission,  -rays probe photon field (Helfand et al. 2005; Porter et al. 2006) For π 0 decay,  -rays probe ambient density Interstellar radiation field (Moskalenko et al. 2006) R = 7 kpc R = 3 kpc R = 0 kpc R = 4 kpc GLAST

How Do Pulsars Accelerate Particles? Theory says unshocked wind has  ~ 10 6 X-ray &  -ray synchrotron emission in PWNe - termination shock accelerates particles to  > 10 9 GLAST bandpass needed to measure synch. roll-off - knowing  max as fn. of pulsar parameters constrains mechanism Crab Nebula (Chandra; Weisskopf et al. 2000) PWN around PSR B (INTEGRAL; Forot et al. 2006) Synchrotron spectrum of Crab (Atoyan & Aharonian 1996) GLAST

Variability in Gamma-Ray PWNe Gamma-ray emission from PWNe is variable,  t ~ months (de Jager et al. 1996; McLaughlin et al. 1996; Roberts et al. 2001; Ling & Wheaton 2003) Synchrotron rather than IC Simultaneous GLAST + Chandra - measurement of uncooled spectrum at acceleration site - probe of flow as function of confinement conditions NASA/CXC/ASU/J.Hester et al. Roberts et al. (2001) Crab Nebula (Weisskopf et al. 2000)The Mouse (Gaensler et al. 2004) Black Widow (NASA/CXC/M.Weiss)

Inverse Compton Emission in PWNe Several pulsar wind nebulae now seen with HESS - inverse Compton emission from CMB, starlight, IR from dust - Cerenkov detectors usually see high-energy tail - GLAST will see spectral peak + overlap with synchrotron PWN G (HESS/VLA; Aharonian et al. 2005) Broadband spectrum of G (Aharonian et al. 2005) GLAST Synchrotron IC

Inverse Compton in PWNe (cont.) Synchrotron is convolution of N(E), B IC depends on N(E), photon field Spatial distribution of synch., IC - spatially resolved map of B - particle content, injection rate -  = E fields /E particles Pulsed IC from unshocked wind? (Ball & Kirk 1999; Bogovalov & Aharonian 2000) B (HESS; Aharonian et al. 2005) B (Chandra; Slane et al. 2006) GLAST Crab Nebula (Bogovalov & Aharonian 2000)

Offset Gamma-Ray PWNe HESS sees large TeV nebulae to one side of energetic pulsars - reverse shock from aspherical SNR? (Gaensler et al. 2003; Aharonian et al. 2005) - systems need to expand rapidly, age ~ 5, ,000 years (e.g., de Jager & Venter 2005) GLAST obs. of “Vela-like” pulsars - ~25 sources known (Kramer et al. 2003) - nebulae will be v. large at E ~ 1 GeV - morphology vs. E over five decades  particle transport, magnetic fields, diffusion, interaction with ISM/CSM Aharonian et al. (2006) Blondin et al. (2001) E > 2.5 TeV PSR B < E < 2.5 TeV E < 0.8 TeV

Surveys & Discovery > 1000 missing supernova remnants in Galaxy Young pulsars without supernova remnants or pulsar wind nebulae - invisible in synchrotron if B is low... but inverse Compton independent of B Many new SNRs & PWNe seen w. GLAST, especially for |l| < new SNRs in 1st Galactic quadrant (Brogan et al. 2006) 7000 year old pulsar B (Stappers et al. 1999)

Summary GLAST will (finally!) reveal sites & products of particle acceleration in SNRs GLAST will watch pulsars accelerate particles in real time GLAST will map distribution, evolutionary history, injection rate of particles and magnetic fields in PWNe GLAST spectra + multi-wavelength data will tightly constrain evolution, environment, ambient photon field of SNRs & PWNe GLAST will help complete Galactic sample of SNRs & PWNe NASA/CXC/SAO NASA / ESA / J. Hester / A. Loll /ASU Aurore Simonnet / Sonoma State