1 Deriving cloud parameters for O 3 profile retrieval Zhaonan Cai 1, Xiong Liu 1, Kai Yang 2, Kelly Chance 1 1 SAO 2 UMD 4 th TEMPO Science Team Meeting,

Slides:



Advertisements
Similar presentations
Algorithm improvements for Dutch OMI NO2 retrievals (towards v3.0)
Advertisements

 nm)  nm) PurposeSpatial Resolution (km) Ozone, SO 2, UV8 3251Ozone8 3403Aerosols, UV, and Volcanic Ash8 3883Aerosols, Clouds, UV and Volcanic.
A New A-Train Collocated Product : MODIS and OMI cloud data on the OMI footprint Brad Fisher 1, Joanna Joiner 2, Alexander Vasilkov 1, Pepijn Veefkind.
Envisat Symposium, April 23 – 27, 2007, Montreux bremen.de SADDU Meeting, June 2008, IUP-Bremen Cloud sensitivity studies.
Improvement and validation of OMI NO 2 observations over complex terrain A contribution to ACCENT-TROPOSAT-2, Task Group 3 Yipin Zhou, Dominik Brunner,
1 Ozone Profile Retrieval from SBUV/2 Sweep Mode Data---Preliminary Results Xiong Liu, Kelly Chance Harvard-Smithsonian Center for Astrophysics Matthew.
Xiong Liu Harvard-Smithsonian Center for Astrophysics December 20, 2004 Direct Tropospheric Ozone Retrieval from GOME.
Xiong Liu Harvard-Smithsonian Center for Astrophysics Kelly Chance, Christopher Sioris, Robert Spurr, Thomas Kurosu, Randall Martin,
Extracting Atmospheric and Surface Information from AVIRIS Spectra Vijay Natraj, Daniel Feldman, Xun Jiang, Jack Margolis and Yuk Yung California Institute.
A 21 F A 21 F Parameterization of Aerosol and Cirrus Cloud Effects on Reflected Sunlight Spectra Measured From Space: Application of the.
Xiong Liu, Kelly Chance, and Thomas Kurosu Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA The 36 th COSPAR Scientific Assembly Beijing,
Page 1 1 of 21, 28th Review of Atmospheric Transmission Models, 6/14/2006 A Two Orders of Scattering Approach to Account for Polarization in Near Infrared.
Page 1 1 of 20, EGU General Assembly, Apr 21, 2009 Vijay Natraj (Caltech), Hartmut Bösch (University of Leicester), Rob Spurr (RT Solutions), Yuk Yung.
1 Global Observations of Sulfur Dioxide from GOME Xiong Liu 1, Kelly Chance 1, Neil Moore 2, Randall V. Martin 1,2, and Dylan Jones 3 1 Harvard-Smithsonian.
1 Cross Evaluation of OMI, TES, and GEOS-Chem Tropospheric Ozone Xiong Liu 1, Lin Zhang 2, Kelly Chance 1, John R. Worden 3, Kevin W. Bowman 3, Thomas.
Reflected Solar Radiative Kernels And Applications Zhonghai Jin Constantine Loukachine Bruce Wielicki Xu Liu SSAI, Inc. / NASA Langley research Center.
Development of GEMS Cloud Data Processing Algorithm Yong-Sang Choi 1, Bo-Ram Kim 1, Heeje Cho 2, Myong-Hwan Ahn 1 (Former COMS PI), and Jhoon Kim 3 (GEMS.
Rutherford Appleton Laboratory Remote Sensing Group Ozone Profile Retrieval from MetOp R. Siddans, G. Miles, B. Latter A. Waterfall, B. Kerridge Acknowledgements:
Cloud algorithms and applications for TEMPO Joanna Joiner, Alexander Vasilkov, Nick Krotkov, Sergey Marchenko, Eun-Su Yang, Sunny Choi (NASA GSFC)
M. Van Roozendael, AMFIC Final Meeting, 23 Oct 2009, Beijing, China1 MAXDOAS measurements in Beijing M. Van Roozendael 1, K. Clémer 1, C. Fayt 1, C. Hermans.
21 May 2013 Jim Leitch, PI Geostationary Trace Gas and Aerosol Sensor Optimization (GeoTASO) ESTO IIP 21 May 2013 Jim Leitch,
Xiong Liu, Mike Newchurch Department of Atmospheric Science University of Alabama in Huntsville, Huntsville, Alabama, USA
TEMPO & GOES-R synergy update and GEO-TASO aerosol retrieval for TEMPO Jun Wang Xiaoguang Xu, Shouguo Ding, Cui Ge University of Nebraska-Lincoln Robert.
ARCTAS BrO Measurements from the OMI and GOME-2 Satellite Instruments
A. Bracher, L. N. Lamsal, M. Weber, J. P. Burrows University of Bremen, FB 1, Institute of Environmental Physics, P O Box , D Bremen, Germany.
Validation workshop, Frascati, 13 December 2002Page 1 SCIAMACHY products quality and recommendations Based on presentations and discussions during this.
S5P Ozone Profile (including Troposphere) verification: RAL Algorithm R.Siddans, G.Miles, B.Latter S5P Verification Workshop, MPIC, Mainz th May.
SAO OMI formaldehyde, water vapor and glyoxal retrievals Gonzalo Gonzalez Abad Helen Wang Christopher Miller Kelly Chance Xiong Liu Thomas Kurosu OMI Science.
TEMPO Simulation and Retrieval Tools and Algorithm Testing at SAO Xiong Liu 3 rd TEMPO Science Team Meeting Huntsville, Al, May 27,
Retrieval of Ozone Profiles from GOME (and SCIAMACHY, and OMI, and GOME2 ) Roeland van Oss Ronald van der A and Johan de Haan, Robert Voors, Robert Spurr.
The Second TEMPO Science Team Meeting Physical Basis of the Near-UV Aerosol Algorithm Omar Torres NASA Goddard Space Flight Center Atmospheric Chemistry.
Combining Simultaneously Measured UV and IR Radiances from OMI and TES to Improve Tropospheric Ozone Profile Retrievals Dejian Fu 1, John Worden 1, Susan.
Testing LW fingerprinting with simulated spectra using MERRA Seiji Kato 1, Fred G. Rose 2, Xu Liu 1, Martin Mlynczak 1, and Bruce A. Wielicki 1 1 NASA.
Intercomparison of OMI NO 2 and HCHO air mass factor calculations: recommendations and best practices A. Lorente, S. Döerner, A. Hilboll, H. Yu and K.
1 Preliminary Ozone Profile and Tropospheric Ozone Retrievals From OMI Xiong Liu 1,2, Kelly Chance 2, Lin Zhang 3, Thomas P. Kurosu 2, John R. Worden 4,
Evaluation of OMI total column ozone with four different algorithms SAO OE, NASA TOMS, KNMI OE/DOAS Juseon Bak 1, Jae H. Kim 1, Xiong Liu 2 1 Pusan National.
Use of Solar Reflectance Hyperspectral Data for Cloud Base Retrieval Andrew Heidinger, NOAA/NESDIS/ORA Washington D.C, USA Outline " Physical basis for.
Trace gas algorithms for TEMPO G. Gonzalez Abad 1, X. Liu 1, C. Miller 1, H. Wang 1, C. Nowlan 2 and K. Chance 1 1 Harvard-Smithsonian Center for Astrophysics.
S5P cloud products Sebastián Gimeno García, Ronny Lutz, Diego Loyola German S5P Verification Meeting 1 Bremen, November Chart 1>
Rutherford Appleton Laboratory Remote Sensing Group Tropospheric ozone retrieval from uv/vis spectrometery RAL Space - Remote Sensing Group Richard Siddans,
C. Lerot 1, M. Koukouli 2, T. Danckaert 1, D. Balis 2, and M. Van Roozendael 1 1 BIRA-IASB, Belgium 2 LAP/AUTH, Greece S5P L2 Verification Meeting – 19-20/05/2015.
Rutherford Appleton Laboratory Requirements Consolidation of the Near-Infrared Channel of the GMES-Sentinel-5 UVNS Instrument: Task 1: Initial trade-off:
TOMS Ozone Retrieval Sensitivity to Assumption of Lambertian Cloud Surface Part 1. Scattering Phase Function Xiong Liu, 1 Mike Newchurch, 1,2 Robert Loughman.
1 Monitoring Tropospheric Ozone from Ozone Monitoring Instrument (OMI) Xiong Liu 1,2,3, Pawan K. Bhartia 3, Kelly Chance 2, Thomas P. Kurosu 2, Robert.
Rutherford Appleton Laboratory Requirements Consolidation of the Near-Infrared Channel of the GMES-Sentinel-5 UVNS Instrument: Study Overview R.Siddans.
H 2 O retrieval from S5 NIR K. Weigel, M. Reuter, S. Noël, H. Bovensmann, and J. P. Burrows University of Bremen, Institute of Environmental Physics
Rutherford Appleton Laboratory Requirements Consolidation of the Near-Infrared Channel of the GMES-Sentinel-5 UVNS Instrument: FP, 25 April 2014, ESTEC.
Comparisons of LER/MLER Cloud Pressures with a Model of Mie Scattering Plane-Parallel Cloud Alexander Vasilkov 1, Joanna Joiner 2, Pawan K. Bhartia 2,
SCIAMACHY TOA Reflectance Correction Effects on Aerosol Optical Depth Retrieval W. Di Nicolantonio, A. Cacciari, S. Scarpanti, G. Ballista, E. Morisi,
OMI Soft Calibration P. K. Bhartia, Glen Jaross, Steve Taylor, Xiong Liu, Tom Kelly, Changwoo Ahn, Dave Haffner NASA GSFC, Maryland, USA.
Ozone PEATE 2/20/20161 OMPS LP Release 2 - Status Matt DeLand (for the PEATE team) SSAI 5 December 2013.
Kelly Chance Harvard-Smithsonian Center for Astrophysics Xiong Liu, Christopher Sioris, Robert Spurr, Thomas Kurosu, Randall Martin,
1 Xiong Liu Harvard-Smithsonian Center for Astrophysics K.V. Chance, C.E. Sioris, R.J.D. Spurr, T.P. Kurosu, R.V. Martin, M.J. Newchurch,
TOMS Ozone Retrieval Sensitivity to Assumption of Lambertian Cloud Surface Part 2. In-cloud Multiple Scattering Xiong Liu, 1 Mike Newchurch, 1,2 Robert.
Rutherford Appleton Laboratory Requirements Consolidation of the Near-Infrared Channel of the GMES-Sentinel-5 UVNS Instrument: Initial trade-off: Height-resolved.
Cloud workshop wrap-up OMI science team meeting, 21 June 2006.
Assumption of Lambertian Cloud Surface (I)
DOAS workshop 2015, Brussels, July 2015
Deriving the Instrument Transfer Function from OMI Solar Observations and Its Implications for Ozone Retrievals Kang Sun, Xiong Liu, Zhaonan Cai, Guanyu.
Concurrent measurements of tropospheric NO2 from OMI and SCIAMACHY
Huiqun Wang1 Gonzalo Gonzalez Abad1, Xiong Liu1, Kelly Chance1
Absolute calibration of sky radiances, colour indices and O4 DSCDs obtained from MAX-DOAS measurements T. Wagner1, S. Beirle1, S. Dörner1, M. Penning de.
Requirements Consolidation of the Near-Infrared Channel of the GMES-Sentinel-5 UVNS Instrument: FP, 25 April 2014, ESTEC Height-resolved aerosol R.Siddans.
Mina Kang1, Myoung-Hwan Ahn1, Quintus Kleipool2 and Pepijn Veefkind2
X. Liu1, C.E. Sioris1,2, K. 11/14/2018 Ozone Profile and Tropospheric Ozone Retrieval from SCIAMACHY Nadir Measurements:
An Improved Retrieval of Tropospheric Nitrogen Dioxide from GOME
6th TEMPO Science Team Meeting
MEASUREMENT OF TROPOSPHERIC COMPOSITION FROM SPACE IS DIFFICULT!
Off-line 3DVAR NOx emission constraints
Presentation transcript:

1 Deriving cloud parameters for O 3 profile retrieval Zhaonan Cai 1, Xiong Liu 1, Kai Yang 2, Kelly Chance 1 1 SAO 2 UMD 4 th TEMPO Science Team Meeting, Washington DC, June 2, 2016

2 Outline Motivation and introduction Cloud retrieval using optimal estimation Implementation in SAO OMI ozone profile algorithm Retrieval sensitivities of cloud parameters for TEMPO Summary and Future Outlook

3 Motivation Cloud top pressure (P c ) is essentially a source of systematic error in ozone profile retrieval The cloud treatment in ozone profile retrieval VS the cloud retrieval algorithm Similarities: MLER, IPA Differences: surface pressure, ground albedo, cloud albedo assumption Different “soft” calibration are applied (OMI: Liu et al., 2010, Joiner 2006) Ozone profile retrieval usually need to combine bands/pixels, CTP are co-added weighted by cloud fraction. The effective cloud top pressures are wavelength dependent in UV/VIS Retrieve cloud parameters from co-added radiance using optimal estimation approach, perform retrieval error analysis Several studies show that retrieving more cloud parameters (P c, τ c, f c ) will improve ozone profile retrieval

4 Introduction SAO Ozone profile retrieval algorithm Optimal estimation based algorithm TB climatology (Bak J. 2012) Retrievals of O 3 profile including tropospheric O 3 from UV by GOME, GOME-2, OMI (e.g., Liu et al., 2005, 2010; Cai et al., 2012). OMI: UV-1 (13*48 km 2, nm) + UV-2 (13*24 km 2, nm), co-added CTP from OMCLDRR Wavelength and cross-track dependent “Soft” calibration Cloud retrieval algorithm operates in UV/VIS: OMCLDRR (RRS, nm, direct fitting) (Joiner 2006, Vasilkov 2009) OMCLDO2 (O4, nm, DOAS) (J. R. Acarreta 2004) CTP is sensitive to radiometric calibration Liu et al., 2010, updated Joiner et., 2006 Different “Soft”calibration

5 Equivalent difference in pressure estimated from the penetrate depth of photons Photons penetrate into somewhere in the middle of cloud. Using 361 nm will result in lower cloud top pressure than using 477 nm Large variabilities depends on geometries, COD, cloud fraction. Introduction

6 Ratio= co-adding diff. / retrieval error Error pattern changes in co-added radiance Improved S/N and fitting residual Pixel inhomogeneity induced λ-shift Total ozone error ~4%, tropospheric ozone error ~10% 1σ Difference between P c retrieved from co-added UV2 radiance and from co- added UV2 P c (using RRS nm)

7 Optimal estimation algorithm Optimal estimation approach for cloud retrieval (Poulsen 2012; P. D. Watts 2011; Wang 2016) Retrieve cloud fraction and P c near the ozone fitting window Forward model based on RRS look up table (LIDORT-RRS) (Kai Yang et al., 2013) Perform direct retrieval sensitivity and retrieval error analysis Retrieve cloud parameters from co-added spectra, instead of using co-added cloud product

8 Jacobians for cloud top pressure Ring Refl 60% of the abs. at 477 nm

9 SNR=500 SNR=2000 Retrieval sensitivity for cloud top pressure

10 Implementation in SAO OMI ozone profile algorithm Averaged OMI solar spectrum Empirical bias correction (Liu et al., 2010) Retrieve Gaussian slit function from cross-correlation of reference and OMI solar spectrum Mixed Lambert-Equivalent Reflectivity (MLER) Cloud albedo is set to 0.8, for fully cloudy scene, cloud albedo is allowed to vary Surface albedo is taken from OMILER climatology (Kleipool et al., 2008) using co-added UV-2 radiance (two or more). Fitting Variablesa prioria priori error 1Cloud top pressureOMCLDRR Climatology30% orSurface pressureNCEP-fnl + OMI altitude adj.30 hPa 3Surface albedo 0 th OMILER nm fitting0.05 4Surface albedo 1 st orEffective cloud fraction 0 th 347 nm fitting0.05 orEffective cloud fraction 1 st I/F wavelength shift0.0 nm0.01 nm RRS ( nm), O4( nm) * 2 nd order cloud fraction and scale factor of Ring for O4

11 Surface pressure The “soft” calibration shifts P c towards lower pressures. Much better fitting residual ~0.06% Remove the cross-track dependent pattern in res. OE-RRS ( nm)

12 Retrieval error Random error OE-RRS ( nm) OE-O4 ( nm) Jul 1, 2008 Cloud top pressure

13 Cloud fraction > 0.1 OE-RRS ( nm)OE-O4 ( nm) OMCLDRR OMCLDO2 (477 nm) Jul 1, 2008

14 OE-RRS retrieves higher cloud than OMCLDRR (> 100 mb) Mainly due to the use of RRS-LUT and “soft” calibration Similar pattern, less outliers OE-O4 (361 nm) retrievals agree well with OMCLDO2 (477 nm) Expected lower pressures due to the wavelength dependent penetrate depth OE-RRS vs OMCLDRR OE-O4 vs OMCLDO2 OE-RRSOMCLDRR-v003 OE-O4OMCLDO2-v003

15 Histogram of OMCLDO2, OMCLDRR, OE (O4-361) and OE (RRS) retrievals Jul 1, 2008

16 Pc, fc, τ c can be retrieved from the combination of O 2 -O 2 and O 2 -A bands (Daniel et al. 2003, Diedenhoven et al. 2007, Deelen et al. 2008). The retrieval of cloud optical depth can further improve ozone profile retrievals (Diedenhoven et al. 2007) Pc, fc from 760 nm Retrieve Pc, fc, τ c from UV( nm) + NIR (760 nm) Diedenhoven, B. v., et al. (2008). Retrieval sensitivities of cloud parameters for TEMPO

17 O4 O2-B O2-γRRS nm RRS nm O 2 -O nm O 2 -O nm O 2 - γ band 688 nm O 2 -B band

18 The state vector comprise following: - cloud top pressure P c - cloud optical depth τ c - cloud fraction f c - surface albedo A s - Scale factor for H 2 O Cloud model: a single, plane-parallel, layer of liquid water or ice particles. The layer is assumed to be geometrically infinitely thin (Poulsen, Siddans et al. 2012) Forward model: VLIDORT (GEOCAPE Tool), IPA Retrieval model: optimal estimation, sensitivity analysis

19 O2-B Weighting function w.r.t P c O4 O2-γ

20 Retrieval sensitivity O2-B band contains significant information of Pc for all cloud fractions, and less about optical depth and cloud fraction, for optical thin cloud. For O2-O2 bands, the sensitivity to Pc is higher for lower-cloud, due to the quadratic dependent of the O2-O2 absorption. UV/VIS provide more information for τ c f c No single band has the best capability PcPc τcτc fcfc AsAs

21 PcPc τcτc fcfc AsAs Multi-bands improve retrieval of cloud parameters. UV+O2-B can capture most of the improvements

22 Retrieval Error

23 CTP retrieval error COD retrieval error hPa Surface albedo COD

24 Summary and Future Outlook The SAO ozone profile retrieval algorithm is updated to retrieve wavelength- dependent cloud fraction and cloud top pressure near the ozone fitting window. Cloud top pressures are retrieved from OMI using RRS and O4 (361 nm) using optimal estimation approach, as well as the error estimations. RRS retrieve higher cloud compared to OMCLDRR and O4 (361 nm) shows good agreement with OMCLDO2. Sensitivity study for TEMPO show that cloud top pressure, cloud optical depth and cloud fraction can be retrieved from the combination of UV and O2-B. Next-term work will include: - Correct the effects of ignoring polarization and temperature-dependent absorption of O4 - Validate total ozone and ozone profile retrievals using new cloud top.

25 Back up

26 Cloud fraction

27

28

29

30 Vasilkov, A., et al. (2008).