UMCP ENEE 204 Spring 2000, Lecture 30 1 Lecture #31 April 24 st, 2000 ENEE 204 Sections 0201 –0206 HW#11 due Friday April 28 th.

Slides:



Advertisements
Similar presentations
Lecture 2 Operational Amplifiers
Advertisements

EE2010 Fundamentals of Electric Circuits
1 ECE 3144 Lecture 21 Dr. Rose Q. Hu Electrical and Computer Engineering Department Mississippi State University.
Operational Amplifiers
Lecture 101 Equivalence/Linearity (4.1); Superposition (4.2) Prof. Phillips February 20, 2003.
Lecture 111 Thévenin's Theorem (4.3) Prof. Phillips February 24, 2003.
Network Theorems. Circuit analysis Mesh analysis Nodal analysis Superposition Thevenin’s Theorem Norton’s Theorem Delta-star transformation.
Announcements First Assignment posted: –Due in class in one week (Thursday Sept 15 th )
Lecture 91 Loop Analysis (3.2) Circuits with Op-Amps (3.3) Prof. Phillips February 19, 2003.
Op Amps Lecture 30.
EECS 42, Spring 2005Week 3a1 Announcements New topics: Mesh (loop) method of circuit analysis Superposition method of circuit analysis Equivalent circuit.
ECE201 Lect-51  -Y Transformation (2.7); Circuits with Dependent Sources (2.8) Prof. Phillips February 3, 2003.
1 Exam 1 Review Chapters 1, 2, 9. 2 Charge, q Recall Coulomb’s Law Unit: Newton meter 2 / coulomb 2 volt meter / coulomb Charge on an electron (proton)
ECE201 Lect-81  -Y Transformation (2.7); Circuits with Dependent Sources (2.8) Dr. Holbert February 13, 2006.
Lecture 351 Thevenin’s Theorem. Lecture 352 Thevenin’s Theorem Any circuit with sources (dependent and/or independent) and resistors can be replaced by.
Lecture 361 Thevenin Equivalent Circuits. Lecture 362 Review: Independent Source(s) Circuit with one or more independent sources R Th V oc + - Thevenin.
ECE201 Lect-121 Equivalence/Linearity (5.1); Superposition (5.2, 8.8) Dr. Holbert March 6, 2006.
ECE201 Exam #2 Review1 Exam #2 Review Dr. Holbert March 27, 2006.
W. G. Oldham and S. RossEECS 40 Fall 2000 Lecture Linear Circuits -Special Properties Circuits consisting only of linear elements are linear circuits.
3. ANALYSIS TECHNIQUES CIRCUITS by Ulaby & Maharbiz All rights reserved. Do not reproduce or distribute. © 2013 National Technology and Science Press.
Lecture 6, Slide 1EECS40, Fall 2004Prof. White Lecture #6 OUTLINE Complete Mesh Analysis Example(s) Superposition Thévenin and Norton equivalent circuits.
Circuit Theorems VISHAL JETHAVA Circuit Theorems svbitec.wordpress.com.
Electronic Circuits Laboratory EE462G Lab #8 BJT Common Emitter Amplifier.
Electrical Systems 100 Lecture 3 (Network Theorems) Dr Kelvin.
“Op-Amp” Operational Amplifier Non Inverting Amplifier Inverting Amplifier Adder –(and Subtractor using an Inverter) Differential Amplifier Integrator.
Lecture 27 Review Phasor voltage-current relations for circuit elements Impedance and admittance Steady-state sinusoidal analysis Examples Related educational.
ECE 340 ELECTRONICS I OPERATIONAL AMPLIFIERS. OPERATIONAL AMPLIFIER THEORY OF OPERATION CHARACTERISTICS CONFIGURATIONS.
CIRCUITS by Ulaby & Maharbiz
L14 § 4.5 Thevenin’s Theorem A common situation: Most part of the circuit is fixed, only one element is variable, e.g., a load: i0i0 +  +  The fixed.
ECES 352 Winter 2007Ch 13 Oscillators1 Oscillators *Feedback amplifier but frequency dependent feedback *Positive feedback, i.e. β f (  ) A (  ) < 0.
Active Analogue Circuits Year 2 B. Todd Huffman. CP2 Circuit Theory Revision Lecture Basics, Kirchoff’s laws, Thevenin and Norton’s theorem, Capacitors,
ELECTRICAL ENGINEERING: PRINCIPLES AND APPLICATIONS, Fourth Edition, by Allan R. Hambley, ©2008 Pearson Education, Inc. Lecture 9 Op-Amp Circuits.
ECEN 301Discussion #9 – Equivalent Circuits1 Equivalence - Equality Mosiah 29: Therefore they relinquished their desires for a king, and became exceedingly.
1 ECE 3144 Lecture 22 Dr. Rose Q. Hu Electrical and Computer Engineering Department Mississippi State University.
What is an Op Amp? Ideal Op Amps Applications Examples Lecture 9. Op Amps I 1.
EE 221 Review 2 Nodal and Mesh Analysis Superposition Source transformation Thevenin and Norton equivalent Operational Amplifier.
ECE 340 ELECTRONICS I BJT APPLICATIONS AND BIASING.
Dr. Mustafa Kemal Uyguroğlu
Block A Unit 3 outline One port network Two port network
Mixed Signal Chip Design Lab Operational Amplifier Configurations Jaehyun Lim, Kyusun Choi Department of Computer Science and Engineering The Pennsylvania.
CHAPTERS 5 & 6 CHAPTERS 5 & 6 NETWORKS 1: NETWORKS 1: October 2002 – Lecture 5b ROWAN UNIVERSITY College of Engineering Professor.
CHAPTERS 6 & 7 CHAPTERS 6 & 7 NETWORKS 1: NETWORKS 1: October 2002 – Lecture 6b ROWAN UNIVERSITY College of Engineering Professor.
Lecture 4: Electrical Circuits
Grossman/Melkonian Chapter 3 Resistive Network Analysis.
1 Module 9 - Thévenin and Norton Equivalent Circuits In this module, we’ll learn about an important property of resistive circuits called Thévenin Equivalence.
Operational Amplifiers (Op-Amps)
1 Amplifiers. Equivalent Circuit of a Voltage Amplifier G vo V i IoIo RoRo VoVo ViVi RiRi IiIi Amplifier ViVi VoVo (a) Black Box Representation.
Active Analogue Circuits Year 2 B. Todd Huffman. Circuit Theory Reminders Basics, Kirchoff’s laws, Thevenin and Norton’s theorem, Capacitors, Inductors.
ECE 4991 Electrical and Electronic Circuits Chapter 3.
COMMON-COLLECTOR AMPLIFIER
Op Amp Applications 1EEE 3308 Analyses for A ∞ and loop gain are separate. Design breaks down into two parts: - Arranging A ∞ to do the job - Ensuring.
Differential Amplifiers
OP-AMP APPLICATIONS CONSTANT-GAIN MULTIPLIER CONTROLLED SOURCES INSTRUMENTATION AMPLIFIER.
OP-AMPs Op Amp is short for operational amplifier. An operational amplifier is modeled as a voltage controlled voltage source. An operational amplifier.
ECE201 Lect-131 Loop Analysis (7.8) Circuits with Op-Amps (3.3) Dr. Holbert October 9, 2001.
1 Module 10 Thévenin Equivalent Circuits with Dependent Sources Up until now… + _ Port Resistors and Independent Sources Only.
Circuit Theorems Eastern Mediterranean University 1 Circuit Theorems Mustafa Kemal Uyguroğlu.
Circuit Theorems 1.  Introduction  Linearity property  Superposition  Source transformations  Thevenin’s theorem  Norton’s theorem  Maximum power.
Circuit Theorems 1.  Introduction  Linearity property  Superposition  Source transformations  Thevenin’s theorem  Norton’s theorem  Maximum power.
Announcements New topics: Mesh (loop) method of circuit analysis
Announcements New topics: Mesh (loop) method of circuit analysis
تقویت کننده های عملیاتی
Ch. 5 – Operational Amplifiers
Lecture #6 OUTLINE Reading
Operational Amplifier (Op-Amp)-μA741
Chapter 10 – AC Circuits Recall: Element Impedances and Admittances
Chapter 10 – AC Circuits Recall: Element Impedances and Admittances
Ch. 5 – Operational Amplifiers
Mechatronics Engineering
Ch. 5 – Operational Amplifiers
Presentation transcript:

UMCP ENEE 204 Spring 2000, Lecture 30 1 Lecture #31 April 24 st, 2000 ENEE 204 Sections 0201 –0206 HW#11 due Friday April 28 th

UMCP ENEE 204 Spring 2000, Lecture 30 2 New topic: dependent sources Independent sources Dependent sources ++ ++

UMCP ENEE 204 Spring 2000, Lecture 30 3 There are four types of dependent sources AixAix ixix Current controlled currrent source +vx+vx Gv x Voltage controlled current source ++ RixRix ixix Current controlled voltage source ++ +vx+vx Av x Voltage controlled voltage source

UMCP ENEE 204 Spring 2000, Lecture 30 4 Operation of transistors can be modeled by using dependent sources BJT b e c MOSFET current controlled current source voltage controlled current source d g s

UMCP ENEE 204 Spring 2000, Lecture 30 5 Simple examples ++ +v2+v2 100 v 2 R2R2 R1R1 R3R3 R4R4 ++ vsvs +v2+v2 5i25i2 R2R2 R1R1 R3R3 R 4R 4 ++ vsvs i2i2

UMCP ENEE 204 Spring 2000, Lecture 30 6 For more complex circuits we can use nodal analysis Y3Y3 I s1 I s3 = G 3 v 1 Y2Y2 I s2 = G 2 v 2 Y1Y1 +v2+v2 +v1+v1 v1v1 v3v3 v2v2 v1v1 i 3 =? I s2 = G 2 v 2 = G 2 v 2 I s3 = G 3 v 1 = G 3 v 1 ^ ^ I 3 =Y 3 (v 1 -v 2 ) ^

UMCP ENEE 204 Spring 2000, Lecture 30 7 Some circuits are easier to solve using mesh analysis Z3Z3 V s1 Z2Z2 V s2 = A v 2 V s3 = R I 3 Z1Z1 +v2+v2 +v1+v1 +  ++ ++ I1I1 I2I2 Z4Z4 V s2 = A Z 2 I 1 V s3 = R (I 1 -I 2 )

UMCP ENEE 204 Spring 2000, Lecture 30 8 Another example: a real circuit problem Find v out / v s for  >>1 ReRe RBRB + v out  vsvs rr RCRC ibib   i b BJT

UMCP ENEE 204 Spring 2000, Lecture 30 9 Mesh analysis ReRe RBRB + v out  vsvs rr RCRC   i b I1I1 I2I2 vxvx I 2 =  i b =  I 1 (r  +R e )I 1 + R e  I 1 = v s I 1 = v s /(r  + (  +1)R e ) ibib I 2 =  I 1 =  v s  /(r  + (  +1)R e )

UMCP ENEE 204 Spring 2000, Lecture Calculating the gain of the amplifier ReRe RBRB + v out  vsvs rr RCRC   i b I1I1 I2I2 vxvx ibib I 2 =  v s  /(r  + (  +1)R e ) v out = R C I 2 v out =  v s  R C r  + (  +1)R e

UMCP ENEE 204 Spring 2000, Lecture Thevenin and Norton equivalents can be found for networks containing dependent sources ++ +v2+v2 100 v 2 R2R2 R1R1 R3R3 R4R4 vsvs A B Simple example: + - Z Th V OC A B

UMCP ENEE 204 Spring 2000, Lecture Another simple situation  KVL: iR iR 2 +iR 2  v s =0 i (R 1  99R 2 )  v s i =  v s / (R 1  99R 2 ) + - Z Th V OC A B Turn off sources: +v2+v2 100 v 2 R1R1 R2R2 vsvs A B  + +

UMCP ENEE 204 Spring 2000, Lecture Try again! Find short circuit current.. +v2+v2 100 v 2 R1R1 R2R2 vsvs A B  + + iR 1  v s =0 i  v s /R 1 = I SC i + - Z Th V OC A B

UMCP ENEE 204 Spring 2000, Lecture Another way to solve this problem - use probing current method +v2+v2 100 v 2 R1R1 R2R2 vsvs A B  + + iPiP I 2 =i p I1I1 I2I2 vxvx

UMCP ENEE 204 Spring 2000, Lecture Solving the equations I 2 =i p (R 1 +R 2 ) I 1  R 2 i p = v s +100R 2 (I 1 -i p ) (R 1  99R 2 ) I 1 = v s  99R 2 i p

UMCP ENEE 204 Spring 2000, Lecture Thevenin equivalent B + - Z Th V OC A iPiP +v2+v2 v 2 =V OC - Z Th i p

UMCP ENEE 204 Spring 2000, Lecture An amplifier can be characterized by three parameters Gain Input impedance Output impedance Z in Z out ++ Av in v in ++ v out ++

UMCP ENEE 204 Spring 2000, Lecture Characterizing our amplifier ReRe RBRB + v out  vsvs rr RCRC   i b Z in Z out ++ Av in v in ++

UMCP ENEE 204 Spring 2000, Lecture Mesh analysis ReRe RBRB + v out  vsvs rr RCRC   i b I1I1 I2I2 vxvx I 2 =  i b =  I 1 (r  +R e )I 1 + R e  I 1 = v s I 1 = v s /(r  + (  +1)R e ) ibib I 2 =  I 1 =  v s  /(r  + (  +1)R e )

UMCP ENEE 204 Spring 2000, Lecture Calculating the gain of the amplifier ReRe RBRB + v out  vsvs rr RCRC   i b I1I1 I2I2 vxvx ibib I 2 =  v s  /(r  + (  +1)R e ) v out = R C I 2 v out =  v s  R C r  + (  +1)R e

UMCP ENEE 204 Spring 2000, Lecture Finding the input impedance ReRe RBRB + v out  vSvS rr RCRC   i b ibib iSiS i S = v S /R B +i B = v S /R B + v s /(r  + (  +1)R e ) Z in = v S /i S = R B (r  + (  +1)R e )  > R B Y in = i S /v S = 1/R B + 1 /(r  + (  +1)R e )

UMCP ENEE 204 Spring 2000, Lecture Finding the output impedance ReRe RBRB + v out  vSvS rr RCRC   i b Z out = R C Turn off sources: v S = 0 i b = v s /(r  + (  +1)R e ) = 0 ibib   i b = 0

UMCP ENEE 204 Spring 2000, Lecture Characterizing the amplifier ReRe RBRB + v out  vSvS rr RCRC   i b ibib Z in Z out ++ Av in v in ++ Z in = R B Z out = R C for large 

UMCP ENEE 204 Spring 2000, Lecture Performance of an amplifier in a system can be calculated from the three parameters Z in Z out ++ A v in v in ++ RSRS vSvS RLRL out V Sin S R Z Z V  A Lout L R Z R   v out ++ Efficient power transfer requieres impedance matching

UMCP ENEE 204 Spring 2000, Lecture Operational amplifier is an ideal differential amplifier ++ v1v1 v2v2 0  v out = A (v 2 -v 1 ) + Infinite input impedance Zero output impedance Very high (infinite) gain

UMCP ENEE 204 Spring 2000, Lecture Circuit model for an operational amplifier ++ v1v1 v2v2 0  v out = A (v 2 -v 1 ) + ++ Av in v1v1 v2v2 + v in  Typical A= 10 4  > 10 7

UMCP ENEE 204 Spring 2000, Lecture Properties of a good voltage amplifier Z in Z out ++ Av in v in ++ High gain High input impedance RSRS vSvS Low output impedance RLRL A

UMCP ENEE 204 Spring 2000, Lecture Inverting configuration for operational amplifier ++ v1v1 v2v2 + v out = A (v 2 -v 1 )  R1R1 R2R2 ++ vsvs

UMCP ENEE 204 Spring 2000, Lecture Operational amplifier with large, finite A R2R2 ++ v1v1 v2v2 + V out = A (v 2 -v 1 )  R1R1 ++ VsVs i1i1 i2i2  V S +i 1 R 1 + i 2 R 2 + A (v 2 -v 1 ) = 0 i 1 = i 2 due to infinite input impedance  V S +i 1 R 1 + i 1 R 2 + A (  V S + i 1 R 1 ) = 0 i 1 (R 1 (1+A) + R 2 ) = V S (1+A) i 1 = V S (A+1) / ( R 1 (A+1) + R 2 ) i 1  > V S / R 1 v 1 =V S  i 1 R 1 v 1 -> 0 V out =  i 2 R 2 V out   i 1 R 2  V S R 2 / R 1

UMCP ENEE 204 Spring 2000, Lecture Virtual short ++ v1v1 v2v2 + V out = A (v 2 -v 1 )  R1R1 ++ vsvs i1i1 i2i2 In general: 0v vA 12  as i 1 = V S / R 1

UMCP ENEE 204 Spring 2000, Lecture Calculation of gain R2R2 ++ v1v1 v2v2 + V out  R1R1 ++ vsvs i1i1 i2i2 i 1 = i 2 i 2 R 2 +  V out = 0 V out =  i 2 R 2 =  i 1 R 2 i 1 = V S / R 1 V out =  V S R 2 / R 1 What does negative gain mean?

UMCP ENEE 204 Spring 2000, Lecture Procedure for analysis of operational amplifier circuit 1. Find the potential at the + input terminal 2. Using virtual short equate the potentials at + and  terminals 3. Find the current flowing into the feedback resistor 4. Calculate the output voltage

UMCP ENEE 204 Spring 2000, Lecture Example ++ 10 k  ++ vsvs 1M  + V out =  100 V S 

UMCP ENEE 204 Spring 2000, Lecture The load has no effect on the gain of ideal operational amplifier ++ 10 k  ++ vsvs 1M  + V out =  100 V S  50  Output impedance is zero

UMCP ENEE 204 Spring 2000, Lecture The resistor at the + input has no effect on the gain of ideal operational amplifier ++ 10 k  ++ vsvs 1M  + V out =  100 V S  50  100  input impedance is infinite

UMCP ENEE 204 Spring 2000, Lecture The resistor between the input terminals has no effect on the gain of ideal operational amplifier ++ 10 k  ++ vsvs 1M  + V out =  100 V S  50  100  Virtual short is in parallel with the resistor

UMCP ENEE 204 Spring 2000, Lecture Non-inverting configuration operational amplifier ++ v1v1 v2v2 + V out  R1R1 R2R2 ++ vsvs i1i1 i2i2 i 1 =  V S /R 1 i 2 = i 1 =  V S /R 1  V S + i 2 R 2 +V out = 0 v 2 = V S v 1 = v 2

UMCP ENEE 204 Spring 2000, Lecture Voltage follower - buffer amplifier ++ + V out  ++ vsvs  V S +V out = 0 v 2 = V S v 1 = v 2 What is the use of an amplifier with unit gain?