حسن بیات - دانش ‌ آموخته ‌ ی علوم آزمایشگاهی اردیبهشت 1395.

Slides:



Advertisements
Similar presentations
Validity and Reliability of Analytical Tests. Analytical Tests include both: Screening Tests Diagnostic Tests.
Advertisements

Acute pulmonary embolism: diagnostic algorithms Alexandre GHUYSEN Service des Urgences - CHU Liège Symposium Belge des Médecins de l’Urgence Bruxelles,
TESTING A TEST Ian McDowell Department of Epidemiology & Community Medicine November, 2004.
Curva ROC figuras esquemáticas Curva ROC figuras esquemáticas Prof. Ivan Balducci FOSJC / Unesp.
Diagnostic Tests Patrick S. Romano, MD, MPH Professor of Medicine and Pediatrics Patrick S. Romano, MD, MPH Professor of Medicine and Pediatrics.
Receiver Operating Characteristic (ROC) Curves
GerstmanChapter 41 Epidemiology Kept Simple Chapter 4 Screening for Disease.
Assessing and Comparing Classification Algorithms Introduction Resampling and Cross Validation Measuring Error Interval Estimation and Hypothesis Testing.
D-dimer in the Diagnosis of Pulmonary Embolism Cheryl Pollock PGY-3.
Judgement and Decision Making in Information Systems Diagnostic Modeling: Bayes’ Theorem, Influence Diagrams and Belief Networks Yuval Shahar, M.D., Ph.D.
DIAGNOSTIC TESTS Assist. Prof. E. Çiğdem Kaspar Yeditepe University Faculty of Medicine Department of Biostatistics and Medical Informatics.
BASIC STATISTICS: AN OXYMORON? (With a little EPI thrown in…) URVASHI VAID MD, MS AUG 2012.
Medical decision making. 2 Predictive values 57-years old, Weight loss, Numbness, Mild fewer What is the probability of low back cancer? Base on demographic.
Diagnosis Articles Much Thanks to: Rob Hayward & Tanya Voth, CCHE.
EBM --- Journal Reading Presenter :李政鴻 Date : 2005/10/26.
Sensitivity Sensitivity answers the following question: If a person has a disease, how often will the test be positive (true positive rate)? i.e.: if the.
Evidence Based Medicine Workshop Diagnosis March 18, 2010.
Diagnosis: EBM Approach Michael Brown MD Grand Rapids MERC/ Michigan State University.
MEASURES OF TEST ACCURACY AND ASSOCIATIONS DR ODIFE, U.B SR, EDM DIVISION.
Evaluating Diagnostic Tests Payam Kabiri, MD. PhD. Clinical Epidemiologist Tehran University of Medical Sciences.
Appraising A Diagnostic Test
Likelihood 2005/5/22. Likelihood  probability I am likelihood I am probability.
Evidence-Based Medicine Diagnosis Component 2 / Unit 5 1 Health IT Workforce Curriculum Version 1.0 /Fall 2010.
1. Statistics Objectives: 1.Try to differentiate between the P value and alpha value 2.When to perform a test 3.Limitations of different tests and how.
Evaluating Results of Learning Blaž Zupan
Prediction statistics Prediction generally True and false, positives and negatives Quality of a prediction Usefulness of a prediction Prediction goes Bayesian.
How to review a diagnostic study CCBS Study Afternoon 12 August 2008
Diagnostic Tests Studies 87/3/2 “How to read a paper” workshop Kamran Yazdani, MD MPH.
Excluding the Diagnosis of Pulmonary Embolism: Is There a Magic Ball? COPYRIGHT © 2015, ALL RIGHTS RESERVED From the Publishers of.
Diagnostic Test Characteristics: What does this result mean
Journal Club Optimizing Early Rule-Out Strategies for Acute Myocardial Infarction: Utility of 1-Hour Copeptin P. Hillinger, R. Twerenbold, C. Jaeger, K.
1 Medical Epidemiology Interpreting Medical Tests and Other Evidence.
EBM --- Journal Reading Presenter :傅斯誠 Date : 2005/10/26.
Implementation of a Sensitive Troponin I Assay and Risk of Recurrent Myocardial Infarction and Death in Patients With Suspected Acute Coronary Syndrome.
Laboratory Medicine: Basic QC Concepts M. Desmond Burke, MD.
Evaluation of Diagnostic Tests & ROC Curve Analysis PhD Özgür Tosun.
ROC curve estimation. Index Introduction to ROC ROC curve Area under ROC curve Visualization using ROC curve.
Timothy Wiemken, PhD MPH Assistant Professor Division of Infectious Diseases Diagnostic Tests.
Sensitivity, Specificity, and Receiver- Operator Characteristic Curves 10/10/2013.
Assessing the additional value of diagnostic markers: a comparison of traditional and novel measures Ewout W. Steyerberg Professor of Medical Decision.
Accuracy, sensitivity and specificity analysis
The index test results: positivity and negativity criteria.
Performance of a diagnostic test Tunisia, 31 Oct 2014
Diagnostic Test Studies
Sensitivity and Specificity
Presented by Intern邱宏智
Choosing Wisely : Radiology Perspective
The Evaluation of Suspected Pulmonary Embolism
Evidence Based and Cost Effective Guideline for DVT Triage
D-dimer and helical CT-PA based diagnostic algorithm for PE
Evaluating Results of Learning
Performance Measures II
بسم الله الرحمن الرحيم Clinical Epidemiology
کاربرد آمار در آزمایشگاه
Accuracy, sensitivity and specificity analysis
Diagnostic Algorithms for ACS and High-Sensitivity Troponin
The receiver operating characteristic (ROC) curve
Refining Probability Test Informations Vahid Ashoorion MD. ,MSc,
EM. R1 박정숙.
Nat. Rev. Cardiol. doi: /nrcardio
Advancing Acute Coronary Syndrome Assessment:
Cost-Effectiveness of Strategies for Diagnosing Pulmonary Embolism Among Emergency Department Patients Presenting With Undifferentiated Symptoms  Ram.
Clinical policy: Critical issues in the evaluation and management of adult patients presenting with suspected pulmonary embolism    Annals of Emergency.
Clots in the lung Annals of Emergency Medicine
Comparison of the Unstructured Clinician Gestalt, the Wells Score, and the Revised Geneva Score to Estimate Pretest Probability for Suspected Pulmonary.
Volume 134, Issue 2, Pages (August 2008)
CTA chest use in ED to fish for PEs
Lecture 4 Study design and bias in screening and diagnostic tests
Computation of Post Test Probability
Clots in the lung Annals of Emergency Medicine
Presentation transcript:

حسن بیات - دانش ‌ آموخته ‌ ی علوم آزمایشگاهی اردیبهشت 1395

ویژگی ‌ های تشخیصی : حساسیت بالینی - اختصاصیت بالینی منحنی « ویژگی ‌ های اجرایی گیرنده » نظریه ‌ ی بایس احتمال پیش ‌ آزمون / احتمال پس ‌ آزمون

 هدف از انجام هر آزمون پیراپزشکی : کاستن از عدم قعطیت بالینی  مثبت کاذب : افراد بدون بیماری که آزمایش مثبت می ‌ شود؛  منفی کاذب : افراد دارای بیماری که آزمایش منفی می ‌ شود؛  کاستن از عدم قطعیت : ترکیب اطلاعات حاصل از یک آزمون با اطلاعات پیشین خطای نوع اول، α خطای نوع دوم، β

 حساسیت بالینی ( تشخیصی ): کسری از افراد دارای بیماری که به درستی شناسایی می ‌ شوند  اختصاصیت بالینی ( تشخیصی ): کسری از افراد بدون بیماری که به درستی شناسایی می ‌ شوند بدون بیماریدارای بیماری FP TP مثبت TNFN منفی Sens. = TP / (TP + FN) Spec. = TN / (TN + FP)

منحنی « ویژگی ‌ های اجرایی گیرنده » Receiver Operating Characteristics curve; ROC curve TP rate = Sensitivity FP rate = 1-Specificty 100% 0 A E B C D Random Guess line QUADAS: Quality Assessment of Diagnostic Accuracy Studies STARD: Standards for Reporting of Diagnostic Studies

« سطح زیر منحنی » AUC: شاخص کلی عملکرد « شاخص یودن » Youden Indes YI = Sensitivity + Specificity انتخاب نقطه ‌ ی تمایز ( برشگاه ) ؛ بسته به اولویت : حساسیت یا ویژگی مقایسه ‌ ی روش ‌ ها کاربرد اطلاعات حاصل از نمودار ROC

TP rate: Sensitivity FP rate: 1-Specificty 100% 0 0 R a n d o m G u e s s l i n e YI = ~ 200 YI = ~ 100 آزمایشی با شاخص یودن نزدیک 100% ، به کاهش عدم قطعیت بالینی کمکی نمی ‌ کند !

B: مناسب غربالگری A: مناسب تایید Sens = 97% Spes = 40% Spes = 28% Spes = 98% Sens = 47% Spes = 59%

ارزش پیشگویانه ‌ ی نتیجه ‌ ی مثبت؛ PV+: کسری از افراد دارای جواب مثبت که بیمار هستند. ارزش پیشگویانه ‌ ی نتیجه ‌ ی منفی؛ PV- : کسری از افراد دارای جواب منفی که بیمار نیستند. مثال : مشخصات بالینی یک روش سنجش HBs Ag: Sens. = 98% Spec. = 95% اگر در غربالگری هپاتیت B ، جواب آزمایش یک نفر مثبت شد، چقدر احتمال دارد بیمار باشد؟ اگر جواب آزمایش یک نفر منفی شد، چقدر احتمال دارد بیمار نباشد؟... معمولا حساسیت و اختصاصیت را با ارزش پیشگویانه ‌ ی مثبت و منفی اشتباه می ‌ شود. Tietz 2015: Edward R. Ashwood کاربرد ویژگی ‌ های تشخیصی : ارزش پیشگویانه Predictive Value

بیمار غیر بیمار Positive Negative TP FP FNTN PV- = TN / (TN + FN) PV+ = TP / (TP + FP) ارزش ‌ های پیشگویانه تابعی هستند از حساسیت، ویژگی و شیوع مشخصات بالینی روش سنجش HBs Ag: Sens. = 98% ; Spec. = 95% % 97.94%

بیمار D غیر بیمار ND Positive Negative PV- = TN / (TN + FN) PV+ = TP / (TP + FP) Prev. = 5% n = 100, nD = 100,000 x 5% = 5,000 TP = 5,000 x 98% = 4,900 FN = 100 nND = 95,000 TN = 9500 x 95% = 90,250 FP = 4, / 9650 = 50.78% / = 99.89% مشخصات بالینی روش سنجش HBs Ag: Sens. = 98% ; Spec. = 95%

Positive Negative PV- = TN / (TN + FN) PV+ = TP / (TP + FP) Prev. = 1% n = 100,000 nD = 1,000 TP = 980 FN = 20 nND = 99,000 TP = 94,050 FN = 4, بیمار D غیر بیمار ND مشخصات بالینی روش سنجش HBs Ag: Sens. = 98% ; Spec. = 95%

نظریه ‌ ی بایس؛ BAYES' THEOREM راهی برای حساب کردن احتمالات جدید پس از افزودن دانسته ‌ های جدید به دانسته ‌ های پیشین در صورت به دست آمدن نتیجه ‌ ی مثبت :

روش محاسبه FAGAN Nomogram

مثال :  ZnT8Ab در تشخیص دیابت نوع 1 ؛ کیت الایزا؛ حساسیت : 65% ، اختصاصیت : 98% Pre-test P. = 35%; Post-test Positive = 94.6% Post-test Negative = 16.1% Pre-test P. = 0.1%; Post-test Positive = 3.1% Post-test Negative = 0.4%  ANA ؛ حساسیت : 95% ، اختصاصیت : 50% Pre-test P. = 30%; Post-test Positive = 44.9% Post-test Negative = 4.1%  dsDNA Ab ؛ حساسیت : 60% (40 تا 80 درصد ) ، اختصاصیت : 99% Pre-test P. = 55%; Post-test Positive = 98.6% Post-test Negative = 33.1%  Sm Ab; ELIS ؛ حساسیت : 55% (50 تا 60 درصد ) ، اختصاصیت : 99.9% Pre-test P. = 80%; Post-test Positive = 99.9% Post-test Negative = 64.3%  RF ؛ حساسیت : نسبتا بالا، اختصاصیت : کم  CCP Ab ؛ حساسیت : متوسط، اختصاصیت : زیاد

ACP-2015: Evaluation of Patients With Suspected Acute Pulmonary Embolism Best Practice Advices: 1: Clinicians … validated clinical prediction rules to estimate pretest probability... 2: Clinicians should not obtain D -dimer … low pretest probability of PE and who meet all Pulmonary Embolism Rule-Out Criteria. 3:... high-sensitivity D -dimer … intermediate pretest probability of PE or … low pretest probability … do not meet all … Rule-Out Criteria. 4: … age-adjusted D -dimer thresholds … older than 50 years to determine whether imaging is warranted. 5: … should not obtain any imaging … d-dimer level below the age-adjusted cutoff. 6: … CT pulmonary angiography… high pretest probability of PE. …should not obtain a d-dimer … high pretest probability of PE hs D -dimer tests (ELISA) can be used to rule out PE in patients with low or intermediate pretest probability of PE, whereas older latex or erythrocyte agglutination assays can only rule out PE in patients with low pretest probability.

Implementing High Sensitivity Cardiac Troponin Assays [IFCC-2015 recommendations] - CLN; Dec In order to appropriately interpret results, … each patient’s pre-test probability … Utilization Management: Moving Beyond Clichés - CLN; Dec As a result of Bayes’ theorem, the information value of any test is always highest when the pre-test probability of the result is neither too small nor too large. Automated mechanisms for optimizing pre-test probability abound. An example is reflexive test algorithms, which use a cheap or simple screening test to pre-select … Another is point-of-order decision support, which relies on questionnaires or automated queries to gather pre-existing clinical or laboratory data that validate the pre-test probability.

جمع ‌ بندی :  هدف از آزمون ‌ های آزمایشگاهی کاستن از عدم قطعیت بالینی است؛

جمع ‌ بندی :  تفسیر تقریبا تمام نتایج آزمایشگاهی، از احتمال بیماری پیش از انجام آزمایش تاثیر می ‌ گیرد؛  نتیجه ‌ ی آزمایش باید بسته به شیوع بیماری تعدیل شود؛  هدف از آزمون ‌ های آزمایشگاهی کاستن از عدم قطعیت بالینی است؛ اگرچه این اصول بیش از 200 سال قدمت دارد، اما کمتر از آن ‌ ها استفاده می ‌ شود. Tietz 2015: Edward R. Ashwood Ricardo A. Quinonez - Alan R. Schroeder * Without a doubt, lack of comfort with uncertainty is one of the drivers of excessive care. *Interview with Medscape - When Making the Exact Diagnosis Is Not Exactly the Right Thing to Do

شاد باشیدشاد باشید 1- Tietz Textbook of Clinical Chemistry and Molecular Diagnostics; 5 th edition; Henry’s Clinical Diagnosis and Management by Laboratory Methods; 22th edition; 2011 منابع : 3- J. Walach, Interpretation of Diagnostic Tests; 18th edition; 2006