2016 AADC - LFAA AADC: Aperture Array Design & Construction Consortium LFAA: Low Frequency Aperture Array Array Prototypes Bologna, 11 May 2016, 9:30 AM.

Slides:



Advertisements
Similar presentations
Doc.: IEEE /0346 Submission March 04 Niels van Erven, 3ComSlide 1 Proposal how to measure RF sensitivity for WPP Niels van Erven 3Com.
Advertisements

Update on Measurements and Simulations at Cambridge: SKALA element + LNA Eloy de Lera Acedo Nima Razavi Ghods Cavendish Laboratory University of Cambridge.
2010 SKA Africa Bursary Conference Chalmers University of Technology Jian Yang, Associate Professor Chalmers University of Technology Sweden.
BYU Auxiliary Antenna Assisted Interference Cancellation for Radio Astronomy Imaging Arrays Brian Jeffs and Karl Warnick August 21, 2002.
BDT Radio – 2a – CMV 2009/10/06 Basic Detection Techniques 2a (2009/10/06): Array antennas Theory: interferometry & synthesis arrays Introduction Optical.
SKA AA-low: LPD antenna (SKALA) & path towards AAVS0 at Cambridge Eloy de Lera Acedo University of Cambridge 1 AAVP 2011: Taking the AA programme into.
Performance of station array configurations Sparse vs. Dense, Regular vs Random Jaap D. Bregman AAVP Workshop,Cambridge,
Dec 2010 AAVP Cambridge workshop AAVP AAVS1/2-low demonstrators Jan Geralt Bij de Vaate.
CONCLUSION - The impact of the fringe wash effects on the radiometric sensitivity as well as on the spatial resolution of the SMOS instrument has been.
Applicability and limitations of redundancy cal. in phased array stations Parisa Noorishad, Stefan Wijnholds, Arnold van Ardenne & Thijs van der Hulst.
Array Antenna Designs for the SKA-AAlo Eloy de Lera Acedo 1 AAVP 2010, Cambridge, UK. 10/12/10.
July 2015 doc.: IEEE /XXXXr0 July 2015
LOFAR Antenna Systems Dion Kant, Wim van Cappellen AAVP – 10 December 2010, Cambridge, UK.
Advanced MWA tile beam models Randall Wayth – ICRAR/Curtin University.
AA-Low Technical Progress Meeting, October 2012, Medicina, Italy AAVS0 & AAVS0.5: System Design and Test Plan Nima Razavi-Ghods Eloy de Lera Acedo.
Main beam representation in non-regular arrays
SKA Introduction Jan Geralt Bij de Vaate Andrew Faulkner, Andre Gunst, Peter Hall.
Tenth Summer Synthesis Imaging Workshop University of New Mexico, June 13-20, 2006 Antennas in Radio Astronomy Peter Napier.
P.Napier, Synthesis Summer School, 18 June Antennas in Radio Astronomy Peter Napier Interferometer block diagram Antenna fundamentals Types of antennas.
Stability of Maximum S/N Beams CSIRO ASTRONOMY AND SPACE SCIENCE Aidan Hotan | ASKAP Deputy Project Scientist 4 th March 2014 SKA Workshop on Calibration.
Simulation of direct space charge in Booster by using MAD program Y.Alexahin, N.Kazarinov.
How Does GPS Work ?. Objectives To Describe: The 3 components of the Global Positioning System How position is obtaining from a radio timing signal Obtaining.
Widefield Astronomy and Technologies for the SKA November 2009 at Limelette, Belgium The SKA AA-lo array; E.M. simulation and design Eloy de Lera.
THE MURCHISON WIDEFIELD ARRAY: FROM COMMISSIONING TO OBSERVING D. Oberoi 1,2, I. H. Cairns 3, L. D. Matthews 2 and L. Benkevitch 2 on behalf of the MWA.
Fundamental limits of radio interferometers: Source parameter estimation Cathryn Trott Randall Wayth Steven Tingay Curtin University International Centre.
Adaptive Filters for RFI Mitigation in Radioastronomy
System designAA Consortium - BolognaOctober 2012 AA Consortium The path to AAVS1 22 October 2012.
Doc.: IEEE /0431r0 Submission April 2009 Alexander Maltsev, Intel CorporationSlide 1 Polarization Model for 60 GHz Date: Authors:
1 Practical considerations on train antenna design CSEM.
Distributed Adaptive Control and Metrology for Large Radar Apertures PI: James Lux Co-Is: Adam Freedman, John Huang, Andy Kissil, Kouji Nishimoto, Farinaz.
AAVS 0.5: An Overview Peter Hall ICRAR/Curtin, Bologna, October 22, 2012.
Scattering and Scintillation in Radio Astronomy 1 The dual-frequency calibration of ionosphere influence in VLBA data processing Andrey Chuprikov.
Antenna II LN09_Antenna Measurements 1 /10 Antenna Measurements.
Antenna Theory CONSTANTINE A. BALANIS Arizona State University
Searching for the Synchrotron Cosmic Web with the Murchison Widefield Array Bryan Gaensler Centre for All-sky Astrophysics / The University of Sydney Natasha.
Universitat Politècnica de Catalunya CORRECTION OF SPATIAL ERRORS IN SMOS BRIGHTNESS TEMPERATURE IMAGES L. Wu, I. Corbella, F. Torres, N. Duffo, M. Martín-Neira.
Keith Grainge Calibration issuesAA-low Technical Progress meeting Calibration Issues Keith Grainge.
Antenna Engineering EC 544 Lecture#9. Chapter 9 Horn Antenna Horn Antenna.
Andrew Faulkner April 2016 STFC Industry Day: Low Frequency Aperture Array Andrew Faulkner Project Engineer.
European Pre-AAVS1 Update AADC all-hands, Bologna, 9-13 May 2016 Nima Razavi-Ghods.
MWA imaging and calibration – early science results
wire antennas (dipole, monopole Yagi)
Fibre Evaluation for MRO Conditions
Recent Results with the UAV-based Array Verification and Calibration System Giuseppe Virone POLITECNICO DI TORINO DIATI.
Antennas in Radio Astronomy
Antennas and Propagation
Nithyanandan Thyagarajan1, Aaron R. Parsons2,
Fringe-Fitting: Correcting for delays and rates
ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 41.
Beam Measurement Characterization and Optics Tolerance Analysis of a 900 GHz HEB receiver for the ASTE telescope Alvaro Gonzalez, K. Kaneko, Y. Uzawa.
Splice and short together
AAVS1 Calibration Aperture Array Design & Construction Consortium
Jessore University of Science and Technology,
Data Taking Plans for 32T and 128T
ANITA antennas Frequency range: MHz Dual polarization needed
Further Discussion on Beam Tracking for ay
17 November 2018 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Near Field Ranging Algorithm] Date.
Nithyanandan Thyagarajan (Arizona State University) HERA+, MWA+
Novel Method to Measure the Gain of UHF Directional Antennas
Some Design and Calibration Considerations for Dense Aperture Arrays
Observational Astronomy
Observational Astronomy
Slot antenna.
Further Discussion on Beam Tracking for ay
Wireless Communications Chapter 4
An Overview of Antennas:
Antenna Theory Chapter.4.7.4~4.8.1 Antennas
Paper review Yun-tae Park Antennas & RF Devices Lab.
Antenna Theory Chapter.2.6.1~2.7 Antennas
Paper review Yun-tae Park Antennas & RF Devices Lab.
Presentation transcript:

2016 AADC - LFAA AADC: Aperture Array Design & Construction Consortium LFAA: Low Frequency Aperture Array Array Prototypes Bologna, 11 May 2016, 9:30 AM Adrian Sutinjo, Curtin University

2016 AADC - LFAA Highlights AAVS0.5 characterization: A. Sutinjo, T. Colegate, R. Wayth, P. Hall, E. de Lera Acedo, T. Booler, A. Faulkner, L. Feng, N. Hurley-Walker, B. Juswardy, S. Padhi, N. Razavi- Ghods, M. Sokolowski, S. Tingay, and J. G. bij de Vaate, “Characterization of a low-frequency radio astronomy prototype array in Western Australia,” IEEE Trans. Antennas Propagat., vol. 63, no. 12, pp , Dec Hybrid AAVS0.5/SKALA-MWA interferometry: A. Sutinjo, D. Ung, T. Colegate, R. Wayth, P. Hall, E. de Lera Acedo, “Interferometry with hybrid low-frequency radio astronomy arrays,” submitted to IEEE Trans. Antennas Propagat., Mar

2016 AADC - LFAA Highlights AAVS0.5 characterization: A. Sutinjo, T. Colegate, R. Wayth, P. Hall, E. de Lera Acedo, T. Booler, A. Faulkner, L. Feng, N. Hurley-Walker, B. Juswardy, S. Padhi, N. Razavi- Ghods, M. Sokolowski, S. Tingay, and J. G. bij de Vaate, “Characterization of a low-frequency radio astronomy prototype array in Western Australia,” IEEE Trans. Antennas Propagat., vol. 63, no. 12, pp , Dec Hybrid AAVS0.5/SKALA-MWA interferometry: A. Sutinjo, D. Ung, T. Colegate, R. Wayth, P. Hall, E. de Lera Acedo, “Interferometry with hybrid low-frequency radio astronomy arrays,” submitted to IEEE Trans. Antennas Propagat., Mar We have significant experience measuring and characterizing low-frequency aperture arrays in the field We understand the how to work with antennas of different designs and its implications on astronomical calibration

2016 AADC - LFAA Highlights RFoF & Fiber (Fibre, for those so inclined amongst us) Optics: Stability of 2 km surface-laid fiber: B. Juswardy, “Field test result at the MRO to assess gain & phase variation of fibre-optic cable, “SKA-TEL.LFAA.RE.AST-AADC-R-001, km buried fiber: B. Juswardy, “Field test result of the 11-km buried fibre-optic cable at the MRO,” SKA-TEL-LFAA ,

2016 AADC - LFAA Highlights RFoF & Fiber (Fibre, for those so inclined amongst us) Optics: Stability of 2 km surface-laid fiber: B. Juswardy, “Field test result at the MRO to assess gain & phase variation of fibre-optic cable, “SKA-TEL.LFAA.RE.AST-AADC-R-001, km buried fiber: B. Juswardy, “Field test result of the 11-km buried fibre-optic cable at the MRO,” SKA-TEL-LFAA , We understand factors that influence fiber stability and their impacts on array calibration

2016 AADC - LFAA Highlights

2016 AADC - LFAA Highlights We have developed expertise in practical considerations for operating an RFoF system at the MRO for low-frequency aperture arrays

2016 AADC - LFAA Highlights AAVS0.5 characterization: A. Sutinjo, T. Colegate, R. Wayth, P. Hall, E. de Lera Acedo, T. Booler, A. Faulkner, L. Feng, N. Hurley-Walker, B. Juswardy, S. Padhi, N. Razavi- Ghods, M. Sokolowski, S. Tingay, and J. G. bij de Vaate, “Characterization of a low-frequency radio astronomy prototype array in Western Australia,” IEEE Trans. Antennas Propagat., vol. 63, no. 12, pp , Dec Hybrid AAVS0.5/SKALA-MWA interferometry: A. Sutinjo, D. Ung, T. Colegate, R. Wayth, P. Hall, E. de Lera Acedo, “Interferometry with hybrid low-frequency radio astronomy arrays,” submitted to IEEE Trans. Antennas Propagat., Mar

2016 AADC - LFAA AAVS0.5

2016 AADC - LFAA AAVS0.5: Sensitivity Adrian Sutinjo10 E-W polarization (“X”) N-S (“Y”) Simulated Measured Simulation in FEKO

2016 AADC - LFAA AAVS0.5: Beam Pattern Adrian Sutinjo11 HydA & MWA AAVS0.5

2016 AADC - LFAA Highlights AAVS0.5 characterization: A. Sutinjo, T. Colegate, R. Wayth, P. Hall, E. de Lera Acedo, T. Booler, A. Faulkner, L. Feng, N. Hurley-Walker, B. Juswardy, S. Padhi, N. Razavi- Ghods, M. Sokolowski, S. Tingay, and J. G. bij de Vaate, “Characterization of a low-frequency radio astronomy prototype array in Western Australia,” IEEE Trans. Antennas Propagat., vol. 63, no. 12, pp , Dec Hybrid AAVS0.5/SKALA-MWA interferometry: A. Sutinjo, D. Ung, T. Colegate, R. Wayth, P. Hall, E. de Lera Acedo, “Interferometry with hybrid low-frequency radio astronomy arrays,” submitted to IEEE Trans. Antennas Propagat., Mar

2016 AADC - LFAA Adrian Sutinjo13 Identical vs. Hybrid Arrays We initially treated as a non-issue the AAVS0.5 and MWA “hybrid” array combination Radio astronomy software packages start with the assumption that the antennas/array are identical

2016 AADC - LFAA Adrian Sutinjo14 But…… AAVS0.5 and MWA are clearly not identical arrays: different antenna elements and spacing. Exact? Approximate? Under what conditions? How does it affect AAVS0.5/1 and SKA_LOW?

2016 AADC - LFAA Summary of Findings Adrian Sutinjo15 If we have a bright compact source, hybrid array complex gain calibration (1 AUT + N-1 identical arrays) results in amplitude and phase direction-dependent error factors  Amplitude factor is due to polarization mismatch of the hybrid array  Phase factor is due to relative movement of antenna/array phase centers If we have a bright compact source, these effects can be well characterized and their impact assessed.

2016 AADC - LFAA Example : Adrian Sutinjo16 A single log-periodic antenna and one MWA Bow-tie at 220 MHz ~0.99 ~-10 ~-45 Partial trajectory of HydA, a southern hemisphere calibrator

2016 AADC - LFAA Amplitude: Adrian Sutinjo17 AAVS0.5 and MWA at 220 MHz HydA

2016 AADC - LFAA Adrian Sutinjo18 How much hybrid array effect is at play here? It can be shown that we measure

2016 AADC - LFAA Phase: Phase: Adrian Sutinjo19 Origin of SKALA radiation moves up relative to that of the MWA with increasing frequency. Perfect conductor Bow-tie image Soil

2016 AADC - LFAA Estimating Δz Adrian Sutinjo20 MHz Physical measurement of height from base to ~λ/2 element (cm) 160~ ~ ~135120

2016 AADC - LFAA Useful for Calibration of a SKALA with MWA In AAVS1, each SKALA is connected to RFoF and fiber optic cables. Fiber optic cables cannot practicably be phased-matched. Prior to beamforming, we need to equalize these paths (“instrumental calibration”)

2016 AADC - LFAA Calibrating an embedded SKALA using an MWA tile tracking HydA: Steps are due to MWA analog beamformer (B/F) Calibration Solution

2016 AADC - LFAA A “simple” calibration involves correcting for the embedded SKALA’s position relative to the nominal center of the array

2016 AADC - LFAA Phase correction is obtained by EM simulation of MWA tile and embedded SKALA over the trajectory of HydA It corrects for phase center of SKALA relative to MWA and mutual coupling effects in the MWA tile (esp. at 220 MHz)

2016 AADC - LFAA Note the improvement in the residual phase (std. dev.) Not as much improvement at 160 MHz

2016 AADC - LFAA

2016 AADC - LFAA Conclusion We have a fall back calibration method using the MWA Expect to expand this work to calibrate the disparate SKALA embedded element patterns in AAVS1 in intra-station calibration (with Randall) Continue to add understanding of RFoF and fiber optics for AAVS1

2016 AADC - LFAA Highlights Low-frequency radio astronomy antenna polarization: R. A. C. Baelemans, A. Sutinjo, P. J. Hall, A. B. Smolders, M. Arts, and E. de Lera Acedo, “Analysis of the polarization properties of dual polarized inverted vee dipole antennas over a ground plane,” submitted to IEEE Trans. Antennas Propagat., in revision, Mar