SksMinus status 01 HB meeting 2008/4/1 白鳥昂太郎. Contents  Target : 4 He target  Aerogel Cherenkov counters : SAC  Hyperball-J efficiency.

Slides:



Advertisements
Similar presentations
for Fusion Power Monitoring
Advertisements

SKS Minus Detectors in detail Tohoku Univ. K.Shirotori.
SUNJI KIM, H. BHANG, M. KIM, K. TSHOO, K. TANIDA, H. FUJIOKA1, Y. SADA1, and H. ASANO1 Seoul National University, 1 Kyoto University Abstract Introduction.
KEK beam test H. Sakamoto. Purpose To optimize a concentration of the second dopant for scintillating fibers KEK beam test to study light yields for various.
Review of PID simulation & reconstruction in G4MICE Yordan Karadzhov Sofia university “St. Kliment Ohridski” Content : 1 TOF 2 Cerenkov.
J-PARC でのハイパー核ガンマ線分 光実験に向けた Hyperball-J の建設状 況 東北大理、 KEK 、 セイコー EG&G 、 富士電機システム ズ 白鳥昂太郎、 田村裕和、 小野浩、 笠見勝裕、 小池武志、 竹内孝行、 千賀信幸、 春山富義、 保川幸雄 and the Hyperball-J.
PAIR SPECTROMETER DEVELOPMENT IN HALL D PAWEL AMBROZEWICZ NC A&T OUTLINE : PS Goals PS Goals PrimEx Experience PrimEx Experience Design Details Design.
The HERMES Dual-Radiator Ring Imaging Cerenkov Detector N.Akopov et al., Nucl. Instrum. Meth. A479 (2002) 511 Shibata Lab 11R50047 Jennifer Newsham YSEP.
HYP03 Future Hypernuclear Program at Jlab Hall C Satoshi N. Nakamura Tohoku University 18 th Oct 2003, JLab.
SksMinus status 05 HB meeting 2008/5/16 白鳥昂太郎. Contents  Helium target.
ハイパー核ガンマ線分光用 磁気スペクトロメータ -SksMinus- 東北大学 大学院理学研究科 白鳥昂太郎 ATAMI.
Beam test of scintillator strips Miho NISHIYAMA Shinshu University ・ scintillator strip calorimeter ・ Kuraray scintillator strips and KNU extruded ・ the.
SksMinus status SKS meeting 2008/1/18 白鳥昂太郎. SksMinus setup SksMinus  STOF : Time-of-flight  SAC & BAC: K - beam veto and  - ID (n=1.03)  SDC1~4 :
A NON LINEAR TRANSPORT LINE FOR THE OPTIMIZATION OF F18 PRODUCTION BY THE TOP LINAC INJECTOR C. Ronsivalle, L. Picardi, C. Cianfarani, G. Messina, G.L.
Analysis memo (JLab E05-115) 30 May 2014 Graduate school of science, Tohoku University Toshiyuki Gogami.
Setup for hypernuclear gamma-ray spectroscopy at J-PARC K.Shirotori Tohoku Univ. Japan for the Hyperball-J collaboration J-PARC E13 hypernuclear  -ray.
Valery Dormenev Institute for Nuclear Problems, Minsk
SksMinus status SKS meeting 2007/5/10 白鳥昂太郎. SksMinus setup SksMinus  STOF : Time-of-flight  SAC & BAC: K - beam veto and  - ID (n=1.03)  (SFV : K.
Water Tank as the Outer Muon Veto Mingjun Chen
PID for super Belle (design consideration) K. Inami (Nagoya-u) - Barrel (TOP counter) - Possible configuration - Geometry - Endcap (Aerogel RICH) - Photo.
Analysis of the Ammonia Target Polarization Kangkang L. Kovacs, Physics Department, University of Virginia, Charlottesville, VA
KEK BT Summary &Plan Shinshu University Miho Nishiyama.
KOPIO Catcher System RSVP Baseline Review Brookhaven National Laboratory April 20, 2005 Noboru Sasao / Tadashi Nomura (Kyoto U.)
Nov Beam Catcher in KOPIO (H. Mikata Kaon mini worksyop1 Beam Catcher in the KOPIO experiment Hideki Morii (Kyoto Univ.) for the KOPIO.
KEK beam test in May 2005 Makoto Yoshida Osaka Univ. MICE Frascati June 27 th, 2005.
SksMinus status Hyperball collaboration meeting 2009/3/11 K. Shirotori.
KEK Test Beam Phase I (May 2005) Makoto Yoshida Osaka Univ. MICE-FT Daresbury Aug 30th, 2005.
May 26-27, 2005Tadashi Nomura (Kyoto U), KRare05 at Frascati, Italy1 Studies on High QE PMT Tadashi Nomura (Kyoto U.) Contents –Motivation –Performance.
Beam test of low index sillica aerogel Yukiyoshi Kon RCNP, Osaka University Collaboration 2008/5/2.
1/27/2016Katsushi Arisaka 1 University of California, Los Angeles Department of Physics and Astronomy Katsushi Arisaka XAX 10.
Simulations of Light Collection Efficiency (JLab Hall C 12 GeV Kaon Aerogel Detector) Laura Rothgeb Nuclear Physics Group Catholic University of America.
KOPIO Catcher System RSVP Preliminary Baseline Review Brookhaven National Laboratory April 6, 2005 Tadashi Nomura (Kyoto U.)
J-PARC でのハイパー核ガンマ線分光実験用 散乱粒子磁気スペクトロメータ検出器の準備 状況 東北大理, 岐阜大教 A, KEK B 白鳥昂太郎, 田村裕和, 鵜養美冬 A, 石元茂 B, 大谷友和, 小池武志, 佐藤美沙子, 千賀信幸, 細見健二, 馬越, 三輪浩司, 山本剛史, 他 Hyperball-J.
1 Muon Veto System and Expected Backgrounds at Dayabay Hongshan (Kevin) Zhang, BNL DayaBay Collaboration DNP08, Oakland.
Master thesis 2006 Shirotori1 Hypernuclear gamma-ray spectroscopy at J-PARC K1.8 beam line 東北大学大学院理学研究科 原子核物理 白鳥昂太郎.
Aerogel Cherenkov Counters for the ALICE Detector G. Paić Instituto de Ciencias Nucleares UNAM For the ALICE VHMPID group.
KaoS meeting T.Gogami 20/May/2011. Contents Experimental setup Fiducialization of KaoS Works.
J-PARC における 4  He の生成と構造の研究 東北大学 大学院理学研究科 白鳥昂太郎 for the Hyperball-J Collaboration.
May 26-27, 2005Tadashi Nomura (Kyoto U), KRare05 at Frascati, Italy1 KOPIO Beam Catcher Tadashi Nomura (Kyoto U.) Contents –What is Beam Catcher? –Concept.
Hypernuclear gamma-ray spectroscopy at J-PARC K1.8 Beam line Tohoku Univ. K.Shirotori 東北大学 大学院理学研究科 白鳥昂太郎.
P HOTON Y IELD DUE TO S CINTILLATION IN CF4 Bob Azmoun, Craig Woody ( BNL ) Nikolai Smirnov ( Yale University )
Aerogel detector revisited Sokolov Oleksiy, UNAM, progress report, 20 Sept 2006 E int = M – wall reflectivity є – PMT relative area Belle geometry (traditional):
1 Development of a Large Area Photodetector with a Fast Phosphor Anode Toru Iijima Kobayashi-Maskawa Institute Nagoya University Open Meeting for the Hyper-Kamiokande.
Geant4 Simulation for KM3 Georgios Stavropoulos NESTOR Institute WP2 meeting, Paris December 2008.
Development of Multi-pixel photon counters(2) M.Taguchi, T.Nakaya, M.Yokoyama, S.Gomi(kyoto) T.Nakadaira, K.Yoshimura(KEK) for KEKDTP photon sensor group.
Positronium intensity measurement preparation SNU Bongho Kim.
Candidate light sensors for CTA High precision measurements of ultra-low light level detectors for CTA project: PMTs and SiPMs Matthias Kurz Max-Planck-Institute.
FARICH status E.A.Kravchenko Budker INP, Novosibirsk, Russia.
The Status of Hyperball-J Akio Sasaki Dept. of Phys. Tohoku Univ. 23/9/2011.
Development of Forward Aerogel Cherenkov Detector for the H-dibaryon search experiment (E42) at J-PARC Japan-Korea PHENIX Collaboration Meeting Minho Kim.
from Saint Gobain studies
小川真治、 他MEG 第72回年次大会 MEG II 実験液体キセノンガンマ線検出器における取得データサイズ削減手法の開発 Development of the data size reduction method for MEG II liquid.
KOPIO meeting, T. Nomura (Kyoto U.)
PCID – Projectile Charge Identification Detector
MICE Beamline PID w Aerogel Counters
CsI Compton Veto Detector for A low Mass WIMP Experiment
Geant4 Simulation :MCP PET
Upgrade of LXe gamma-ray detector in MEG experiment
On behalf of the GECAM group
Tadashi Nomura (Kyoto U), KRare05 at Frascati, Italy
Slide to be used for using the water displacement method for measuring the volume of an irregular solid. Slide can be modified: Change the volume in the.
Progress on J-PARC hadron physics in 2016
Tadashi Nomura (Kyoto U), KRare05 at Frascati, Italy
MEG実験の液体Xe検出器について 東大 ICEPP  森研究室 M1 金子大輔.
Efficiency Study of Prototype Scintillator for INGRID
SksMinus status 08 HB meeting 2008/7/10 白鳥昂太郎.
SksMinus status 14 HB meeting 2008/10/16 白鳥昂太郎.
SksMinus status 04 HB meeting 2008/5/09 白鳥昂太郎.
SksMinus simulation program
SksMinus status 03 HB meeting 2008/5/02 白鳥昂太郎.
Presentation transcript:

SksMinus status 01 HB meeting 2008/4/1 白鳥昂太郎

Contents  Target : 4 He target  Aerogel Cherenkov counters : SAC  Hyperball-J efficiency

4 He target Designed by Ishimoto-san

Plan  Optimize Target length : < 300 mm (as short as possible) Target shape : Cylinder → Elliptic cylinder, material selection Arm design : To avoid SAC, BAC, HBJ frame  Test Cooling test by refrigerator Existent vacuum chamber with the same arm length

AC design Index : n=1.03 ~4 photons  BAC1,2 160×30×70 mm  SAC1 : 250×80×70 mm  SAC2 : 320×90×70 mm With 2 inch fine mesh PMT  ~72 mm)×8 Inside : White box, w/ or w/o reflector It is necessary to design realistic one!

Discussion  Double stage SAC or SAC+SFV ? 7  Li 692 keV yield by SAC+SFV (Master thesis) 9.5 counts/hour → 8.7 counts/hour (0-20°) : 8 %↓ 5.3 counts/hour → 4.6 counts/hour (0-8°) : 14%↓ SFV size is too large. (Not optimized) SAC efficiency has to be more than 96%.  - detection efficiency by the double stage SAC is 92%.

Hyperball-J efficiency  Total photo peak 1 MeV  ray Original Point source : 6.1% Uniform source : 6.0% Modified Point source : 5.7% Uniform source : 5.7% W/o Target, BAC and SAC material