MICRA: status report Exploration of atom-surface forces on a micrometric scale via high sensitivity force measurements with ultracold quantum gases. Objectives:

Slides:



Advertisements
Similar presentations
From localization to coherence: A tunable Bose-Einstein condensate in disordered potentials Benjamin Deissler LENS and Dipartimento di Fisica, Università.
Advertisements

Trapped ultracold atoms: Bosons Bose-Einstein condensation of a dilute bosonic gas Probe of superfluidity: vortices.
Bose-Bose Mixtures: atoms, molecules and thermodynamics near the Absolute Zero Bose-Bose Mixtures: atoms, molecules and thermodynamics near the Absolute.
Rotations and quantized vortices in Bose superfluids
Fermi-Bose and Bose-Bose quantum degenerate K-Rb mixtures Massimo Inguscio Università di Firenze.
Ultracold Quantum Gases: An Experimental Review Herwig Ott University of Kaiserslautern OPTIMAS Research Center.
Ultracold Alkali Metal Atoms and Dimers: A Quantum Paradise Paul S. Julienne Atomic Physics Division, NIST Joint Quantum Institute, NIST/U. Md 62 nd International.
Bose-Fermi Degeneracy in a Micro-Magnetic Trap Seth A. M. Aubin University of Toronto / Thywissen Group February 25, 2006 CIAR Ultra-cold Matter Workshop,
World of ultracold atoms with strong interaction National Tsing-Hua University Daw-Wei Wang.
World of zero temperature --- introduction to systems of ultracold atoms National Tsing-Hua University Daw-Wei Wang.
Rydberg physics with cold strontium James Millen Durham University – Atomic & Molecular Physics group.
Quantum Entanglement of Rb Atoms Using Cold Collisions ( 韓殿君 ) Dian-Jiun Han Physics Department Chung Cheng University.
Strongly Correlated Systems of Ultracold Atoms Theory work at CUA.
Observation of universality in 7 Li three-body recombination across a Feshbach resonance Lev Khaykovich Physics Department, Bar Ilan University,
Title “Ultracold gases – from the experimenters’ perspective (I)” Wolfgang Ketterle Massachusetts Institute of Technology MIT-Harvard Center for Ultracold.
Temperature scale Titan Superfluid He Ultracold atomic gases.
Reducing Decoherence in Quantum Sensors Charles W. Clark 1 and Marianna Safronova 2 1 Joint Quantum Institute, National Institute of Standards and Technology.
New physics with polar molecules Eugene Demler Harvard University Outline: Measurements of molecular wavefunctions using noise correlations Quantum critical.
Lecture II Non dissipative traps Evaporative cooling Bose-Einstein condensation.
Dynamics of Quantum- Degenerate Gases at Finite Temperature Brian Jackson Inauguration meeting and Lev Pitaevskii’s Birthday: Trento, March University.
Studying dipolar effects in degenerate quantum gases of chromium atoms G. Bismut 1, B. Pasquiou 1, Q. Beaufils 1, R. Chicireanu 2, T. Zanon 3, B. Laburthe-Tolra.
T. Koch, T. Lahaye, B. Fröhlich, J. Metz, M. Fattori, A. Griesmaier, S. Giovanazzi and T. Pfau 5. Physikalisches Institut, Universität Stuttgart Assisi.
Ultracold Fermi gases University of Trento BEC Meeting, Trento, 2-3 May 2006 INFM-CNR Sandro Stringari.
Experiments with Fermi e Bose atomic gases in optical lattices Giovanni Modugno LENS, Università di Firenze, and INFM XXVII Convegno di Fisica Teorica,
Experiments with Trapped Potassium Atoms Robert Brecha University of Dayton.
Three-body recombination at vanishing scattering lengths in ultracold atoms Lev Khaykovich Physics Department, Bar-Ilan University, Ramat Gan, Israel.
Determination of fundamental constants using laser cooled molecular ions.
Degenerate Quantum Gases manipulation on AtomChips Francesco Saverio Cataliotti.
O n t h e T r a c k o f M o d e r n P h y s i c s current magnetic field trapped atoms Cooling,by collisions: a ruby “atom” in "melassa" of photons (here.
Photoassociation Spectroscopy of Ytterbium Atoms with Dipole-allowed and Intercombination Transitions K. Enomoto, M. Kitagawa, K. Kasa, S. Tojo, T. Fukuhara,
Collective excitations in a dipolar Bose-Einstein Condensate Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France Former PhD.
Bose-Einstein condensates in random potentials Les Houches, February 2005 LENS European Laboratory for Nonlinear Spectroscopy Università di Firenze J.
Superfluid dynamics of BEC in a periodic potential Augusto Smerzi INFM-BEC & Department of Physics, Trento LANL, Theoretical Division, Los Alamos.
Physics and Astronomy Dept. Kevin Strecker, Andrew Truscott, Guthrie Partridge, and Randy Hulet Observation of Fermi Pressure in Trapped Atoms: The Atomic.
Experimental study of Efimov scenario in ultracold bosonic lithium
Trap loss of spin-polarized 4 He* & He* Feshbach resonances Joe Borbely ( ) Rob van Rooij, Steven Knoop, Wim Vassen.
Atom chips: A vision for neutral atom QIP E.A. Hinds Imperial College, 11 July 2006 Imperial College London.
Prospects for ultracold metastable helium research: phase separation and BEC of fermionic molecules R. van Rooij, R.A. Rozendaal, I. Barmes & W. Vassen.
Experimental determination of Universal Thermodynamic Functions for a Unitary Fermi Gas Takashi Mukaiyama Japan Science Technology Agency, ERATO University.
Ultracold Helium Research Roel Rozendaal Rob van Rooij Wim Vassen.
Relativistic Quantum Theory of Microwave and Optical Atomic Clocks
QUEST - Centre for Quantum Engineering and Space-Time Research Multi-resonant spinor dynamics in a Bose-Einstein condensate Jan Peise B. Lücke, M.Scherer,
Optical lattices for ultracold atomic gases Sestri Levante, 9 June 2009 Andrea Trombettoni (SISSA, Trieste)
State Scientific Center of the Russian Federation National Research Institute for Physical-Technical and Radio Engineering Measurements Progress in deep.
B. Pasquiou (PhD), G. Bismut (PhD) B. Laburthe, E. Maréchal, L. Vernac, P. Pedri, O. Gorceix (Group leader) Spontaneous demagnetization of ultra cold chromium.
Jerzy Zachorowski M. Smoluchowski Institute of Physics, Jagiellonian University Nonlinear Spectroscopy of Cold Atoms, Preparations for the BEC Experiments.
Interazioni e transizione superfluido-Mott. Bose-Hubbard model for interacting bosons in a lattice: Interacting bosons in a lattice SUPERFLUID Long-range.
Precision collective excitation measurements in the BEC-BCS crossover regime 15/06/2005, Strong correlations in Fermi systems A. Altmeyer 1, S. Riedl 12,
- Founded by INFM (Istituto Nazionale per la Fisica della Materia) June Hosted by University of Trento (Physics Department) - Director: Sandro Stringari.
A Review of Bose-Einstein Condensates MATTHEW BOHMAN UNIVERSITY OF WASHINGTON MARCH 7,
Functional Integration in many-body systems: application to ultracold gases Klaus Ziegler, Institut für Physik, Universität Augsburg in collaboration with.
Agenda Brief overview of dilute ultra-cold gases
ISTITUTO NAZIONALE DI RICERCA METROLOGICA Exploiting hidden correlations: the illusionist game Alice Meda Marco Genovese.
MICRA: status report Exploration of atom-surface forces on a micrometric scale via high sensitivity force measurements with ultracold quantum gases. Objectives:
Jiří Minář Centre for Quantum Technologies
Role of entanglement in extracting information on quantum processes
qBOUNCE: a quantum bouncing ball gravity spectrometer
Magnetization dynamics in dipolar chromium BECs
One-dimensional disordered bosons from weak to strong interactions
Measurement Science Science et étalons
ultracold atomic gases
Quantum optomechanics: possible applications to
Anderson localization of weakly interacting bosons
Optical Cooling and Trapping of Macro-scale Objects
Mach-Zehnder atom interferometer with nanogratings
Advanced LIGO Quantum noise everywhere
Controlled Splitting of an Atomic Wavepacket
Zhejiang Normal University
One-Dimensional Bose Gases with N-Body Attractive Interactions
Advanced Optical Sensing
Presentation transcript:

MICRA: status report Exploration of atom-surface forces on a micrometric scale via high sensitivity force measurements with ultracold quantum gases. Objectives:  new bounds on non-newtonian gravitational forces  investigation of Casimir-Polder forces Firenze (G. Modugno, M. Fattori, M. Inguscio, experiment) Trento (S. Stringari, A. Smerzi, theory) CSN II, Trieste, September 19, 2012

The experiment principle A Bose-Einstein condensate with tunable interaction in proximity of a source mass. Phase-oscillation of the interference pattern from e.g. a lattice potential M. Fattori et al., Phys. Rev. Lett. 100, (2008); M. Fattori et al., ibid.. 101, (2008).

Non-newtonian gravitational forces Our goal:  g = g  x = 2  m An analogous sensitivity is achievable with ultracold Sr atoms (G. Tino, Firenze)

Gravitational vs Casimir-Polder force 10  m 500  m 100  m e.g. Au:  =19.3 Force budget: F g = mg = 10 9 Hz/m F CP = 10 5 Hz/m F G = dU G /dr = 50 Hz/m Expected sensitivity (1s, 100 measurements):  F = F g (100 Hz/m)) van der Waals Casimir-Polder thermal (Lifshitz)

The metallic layer screens CP forces from the source masses. The insulating layer prevents atom adsorption. PRA 69, (2004) The masses are moved independently from the screen. The planned configuration 10  m 500  m 100  m Au (  =19.3,  =-28) Ag (  =10.5,  =-20)) 5  m Au MgF 2 Rb + - E → U G ~ 40 U G ’

Other methods Neutrons ( 1  m) No Casimir forces Torsion balances( >1-10  m) complex modelisation Microspheres ( 1  m) not yet realized in experiments

2012: new set-up for interferometry Science chamber (T < 100 nK) Magnetic trapping (T = 200  K) Laser cooling chamber high magnetic field stability high resolution imaging (1  m) single species approach large repetition rate (5 Hz)

2012: the Bose-Einstein condensates Magnetic trap Magnetic Feshbach field Optical trap (2mK  1  K) M. Landini, S. Roy, L. Carcagnì, D. Trypogeorgos, M. Fattori, M. Inguscio, G. Modugno, Phys. Rev. A 84, (2011); M. Landini et al. submitted (2012).

2012: interaction control and 3-body resonances Important interplay of 2-body and 3-body (Efimov) physics. M. Zaccanti et al., Nature Physics 5, 586 (2009) Universal behavior of atomic Efimov states

Towards quantum interferometry with BECs Coherent states  shot noise limit Entangled states  Heisenberg limit Dynamic control of the interactions: entangled states larger than in other any system are in principle possible.

Quantum enhanced sensitivity measurement beam splitter input phase shift Spatial Mach Zender Interferometer (non interacting particles) LR Uncorrelated particles Quantum entangled particles (interacting)  ~ 1/ (Shot noise limit)   ~ 1/N (Heisenberg limit) Appel, J. et al. Proc. Natl Acad. Sci. USA 106, (2009); C. Gross, T. Zibold, E. Nicklas, J. Estève, M. K. Oberthaler, Nature 464, 1165 (2010); Pezze´, L. & Smerzi, A., Phys. Rev. Lett. 102, (2009). Tunability !!! Direct applications to high-sensitivity measurements; potential extensions to other interferometric schemes, clocks, etc. Quantum-enhanced sensitivity

Decoherence induced by the trapping potential 1 =1064 nm d = 1 /[2sin(  /2)]~ 10  m 2 = 1 /2 = 532 nm Lattice: common mode rejection of light shifts in the wells Array of interferometers: rejection of uncontrolled spurious forces (vibrations, magnetic field gradients, etc…) Radial confinement J. Sebby-Strabley, et al., Phys. Rev. A 73, Super-Lattice Array of interferometers: increase of the sensitivity, with M the number of intererometers. 2012: array of double-well interferometers

2012: ex-situ realization of the superlattice

People and future activities Requested grant for 2012 Consumables: 4 keuro Firenze Giovanni Modugno Massimo Inguscio Chiara D'Errico, Ricercatrice TD CNR Luca Tanzi, dottorando Trento Sandro Stringari Activity for 2013 Calibration of the interferometer and generation of entangled states June 2013: High sensitivity force measurements on short distances Experiment: Marco Fattori, ric. CNR Manuele Landini, TD CNR Andreas Trenkwalder, TD CNR Theory: Augusto Smerzi, ric. CNR Luca Pezzè, TD CNR STREP, ERC Starting Grant, FIRB – Futuro in ricerca 2009

Experimental apparatus 2D Mot 3D Mot Science chamber

Out of equilibrium CP force The CP force can in princple be reduced by reducing the surface temperature

Laser cooling: new discoveries from an old method  Sub-Doppler laser cooling of potassium was considered impossible because of the narrow hyperfine structure.  A new strategy based on dark states allows to achieve temperatures not far from the most gifted species (e.g. rubidium)  New prospects for a test of the equivalence principle? (MAGIA setup) 39 K 41 K M. Landini et al., submitted

Sub Doppler cooling  The narrow hf structure disturbs the cooling cycle  The dark ground hf state is used to control the photom scattering rate, to reduce heating  Cooling at large densities is possible