Distance vs. Displacement, Speed vs. Velocity, Acceleration, Free-fall, Average vs. Instantaneous quantities, Motion diagrams, Motion graphs, Kinematic.

Slides:



Advertisements
Similar presentations
Motion in One Dimension
Advertisements

PHYSICAL SCIENCE MOTION
Chapter 2 Motion in One Dimension. Dynamics The branch of physics involving the motion of an object and the relationship between that motion and other.
Linear Motion Chapters 2 and 3.
Distance The length an object actually travels. How far you go. Scalar Displacement The change in position of an object. Length between start and finish.
Chapter 11 – Part 1 Non-accelerated Motion Chapter
WHAT IS SPEED? Speed is how fast an object is moving relative to another object. A frame of reference is necessary to calculate speed. Speed depends on.
Ch Displacement, Velocity, and Acceleration.
Kinematics Physics of Motion kinematics Kinematics is the science of describing the motion of objects using words, diagrams, numbers, graphs,
Motion in One Dimension
Motion in One Dimension
Chapter 2 Motion in One Dimension. Quantities in Motion Any motion involves three concepts Displacement Velocity Acceleration These concepts can be used.
Chapter 2 Kinematics Slide 1 of 24
1 Chapter 2 Motion in One Dimension Kinematics Describes motion while ignoring the agents that caused the motion For now, will consider motion.
One Dimensional Motion
Motion in One Dimension
Acceleration 1D motion with Constant Acceleration Free Fall Lecture 04 (Chap. 2, Sec ) General Physics (PHYS101) Sections 30 and 33 are canceled.
Chapter 11 - Motion.
PHYSICS MR BALDWIN Speed & Velocity 9/15/2014
Chapter 11: Motion.
Chapter 2 Motion in One Dimension
Kinematics in One Dimension. Mechanics Kinematics (Chapter 2 and 3) The movement of an object itself Concepts needed to describe motion without reference.
Chapter 11 Motion. Position Position- a place or location –Positions may be described differently by the groups, but the distance/displacement is the.
Chapter 2 Kinematics Everything in the universe is in motion. Nothing is permanently at rest. Everything in the universe is in motion. Nothing is permanently.
Chapter 2 Motion in One Dimension 2-1 Displacement and Velocity  Motion – takes place over time Object’s change in position is relative to a reference.
Motion in one dimension
Motion. Some Motion Terms Distance & Displacement Velocity & Speed Acceleration Uniform motion Scalar.vs. vector.
Chapter 2 Motion in One Dimension. Kinematics In kinematics, you are interested in the description of motion Not concerned with the cause of the motion.
Accelerated Motion Merrill Physics Principles and Problems.
1 Chapter 2 Motion in One Dimension Kinematics Describes motion while ignoring the agents that caused the motion For now, will consider motion.
Representing Motion. Motion We are looking to ____________and ____________an object in motion. Three “rules” we will follow: –The motion is in a __________________.
MOTION IN ONE DIMENSION AVERAGE / INSTANTANEOUS SPEED POSITION AND DISPLACEMENT AVERAGE / INSTANTANEOUS VELOCITY AVERAGE / INSTANTANEOUS ACCELERATION.
Motion in One Dimension Chapter 2. Mechanics Mechanics is the study of motion. Kinematics is the science of describing the motion of objects with words,
Introduction to Motion
Scalars vs. Vectors Scalar – a quantity that has a magnitude (size) but does not have a direction. Ex. # of objects (5 apples), speed (10 m.p.h.), distance.
Position, Velocity, Acceleration Motion Notes. Where am I ? (Position) Everything is located at a position in space X (m) (position in meters) To be consistent.
Ying Yi PhD Chapter 2 Motion in One Dimension 1 PHYS HCC.
Motion Along a Straight Line Chapter 3. Position, Displacement, and Average Velocity Kinematics is the classification and comparison of motions For this.
Chapter 4 Linear Motion. Position, Distance, and Displacement Position: being able to describe an object’s location is important when things start to.
Chapter 2 Motion in One Dimension. Kinematics Describes motion while ignoring the agents that caused the motion For now, will consider motion in one dimension.
Dynamics The branch of physics involving the motion of an object and the relationship between that motion and other physics concepts Kinematics is a part.
Kinematics The study of motion in One Dimension
Introduction to Motion
2-1 Displacement and Velocity
Motion.
Chapter 3: LINEAR MOTION Page 7.
ST.JOSEPH'S HIGHER SECONDARY SCHOOL
Introduction to Motion
Speed & Velocity.
Motion.
Physical Science Chapter 11: Motion.
Motion in One Dimension
Kinematics in one dimension
Position, Speed, and Velocity Ch. 4 Physical Science
Introduction to Motion
Motion in One Dimension
Ch. 11: Motion 11.1: Distance and Displacement
Unit 1b: Motion in One Dimension-Constant Acceleration
S-9 Define the term motion. Give an example of something in motion.
Introduction to Motion
Chapter 2 Motion.
S-9 Define the term motion. Give an example of something in motion.
Kinematics The study of motion in One Dimension
Chapter 4 Linear Motion.
Speed Velocity Acceleration Freefall
9.1 – Describing Acceleration
Kinematics 1-D Motion.
Chapter 2 Describing Motion
Presentation transcript:

Distance vs. Displacement, Speed vs. Velocity, Acceleration, Free-fall, Average vs. Instantaneous quantities, Motion diagrams, Motion graphs, Kinematic formulas.

 Distance ◦ Tells “how far” an object is from a given reference point or “how far” it has traveled in a given time. ◦ Is a scalar quantity which means it has magnitude only ◦ Is measured in length units such as meters (m), centimeters (cm), feet (ft), inches (in), miles, etc.  Displacement ◦ Tells “how far” and “which way” an object moves. ◦ Is distance in a given direction ◦ Is a vector quantity because it includes magnitude and direction ◦ The magnitude is measured in the same units as distance, direction is usually measured as an angle. d “d” is the distance from point A to point B or from B to A AB “d” is the distance from A to B and the arrow indicates the direction of the displacement (from A to B). d BA

Distance vs. Displacement start end 2m 5m 1m 2m 3m Displacement Distance : =16 m 45° south of east 45° S W N E

Speed vs. Velocity Ex: speed = 60 mphEx: velocity =60 mph, N  Speed ◦ Is the rate of change of position of an object ◦ Tells “how fast” an object is moving ◦ Is a scalar quantity because it only includes magnitude (size). ◦ Measured in units of distance over time such as mi/hr, km/hr, or m/s  Velocity ◦ Is speed in a given direction ◦ Tells “how fast” and “which way” ◦ Is a vector quantity because it includes magnitude (speed) and direction. ◦ Magnitude is measured in same units as speed.

 The rate of change of velocity ◦ How fast the speed changes ◦ Measured in meters per second per second (m/s/s) or meters per second squared ( ) ◦ A vector quantity (requires both magnitude and direction) ◦ An object may accelerate (or decelerate) in three ways:  Speed up  Slow down  Change direction ◦ If acceleration is… …positive then it is in the same direction as the velocity causing velocity to increase. …negative then it is in the opposite direction of the velocity causing velocity to decrease (deceleration)

 An object under the influence of only gravity is said to be in “free-fall”  We assume no air resistance for any free-fall problems…thus, the “only gravity” stipulation.  All objects fall at a constant acceleration… (9.81 m/s 2 downward near earth’s surface)…regardless of mass. (For quick calculations and estimates we can round to 10 m/s/s)  This means that a falling object will gain 9.81 (or 10) m/s of speed every second that it falls.  Also…an object that is thrown up will slow down or lose 9.81 (or 10) m/s every second of its upward motion.  The velocity of the object at the tip-top of the path is zero, the acceleration is “g” the acceleration due to gravity.

Average vs. Instantaneous velocity  Average ◦ Average velocity is the calculated by dividing total distance traveled by total time ◦ Constant velocity has the same value as average velocity  Instantaneous ◦ Instantaneous velocity is the velocity that an object has at a specific instant in time. ◦ It is NOT the velocity over a time interval. ◦ Initial velocity and final velocity are examples of instantaneous velocities.

 A series of pictures illustrating the motion of the object including displacement, velocity, and acceleration.  The rules: ◦ 4 images at equal time intervals…pay attention to spacing ◦ Include and label velocity vectors with relative lengths to represent relative speed on each image ◦ Include and label a single acceleration vector vvvv a=0 Example: Car moving to the right at constant velocity The term “constant velocity” means that the car will cover equal distances in equal time intervals…thus equal spacing. Also all velocity vectors are the same length indicating the same speed. If there is no change in speed, there is no (zero) acceleration.

Distance Time faster slower  The slope of the line on a distance- time graph tells us about the speed.  Steeper slope means faster speed  Straight line means constant speed  For non-constant motion, the instantaneous speed can be calculated by finding the slope of the tangent line at that point. ΔdΔd ΔtΔt DistanceTime Acceleration (increasing slope) DistanceTime Deceleration (decreasing slope)

Velocity Time  The slope of the line on a velocity- time graph tells us about the acceleration.  Steeper slope  higher acceleration  Straight line means constant acceleration  For non-constant motion, the instantaneous acceleration can be calculated by finding the slope of the tangent line at that point. ΔvΔv ΔtΔt velocityTime velocityTime Changing accelerations

VelocityTime10 sec 8 m/s Area The area under the curve of a velocity-time graph for a particular time interval gives the displacement of the object during that time interval. The seconds cancel out and the units of the area are meters, therefore area is a displacement.

acceleration Time  Horizontal line means constant acceleration  We will not do any calculations with changing accelerations, we assume all accelerations to be constant. 0 Positive constant acceleration Negative constant acceleration Zero acceleration (constant velocity) Note: The slope of a horizontal line is zero. The slope of a vertical line is undefined.

Interpreting graphs (constant motion) time distance velocity acceleration Slope from this gives you this The slope of the pink line is a lower positive constant value. The slope of the blue line is a greater positive constant value The slope of the green line is a negative constant value. A lower positive constant slope means a slower positive constant velocity (horizontal line). A greater positive constant slope means a faster positive constant velocity (horizontal line). A negative constant slope means a negative constant velocity (horizontal line). The slope of a horizontal line is zero, so the acceleration for all three cases is zero. All three motions (pink, blue, and green) are graphed along the time axis at acceleration = 0.

time distancetime velocitytime acceleration Slope from this gives you this The slope of the red line starts at a fairly low (flat) value and is increasing (gets steeper) steadily over time. The slope of the green line starts at a higher value (it’s steeper) and decreases (gets flatter) over time. Increasing slope indicates an increasing velocity over time. Decreasing slope indicates a decreasing velocity over time. We will assume the changes are taking place at a steady rate. Since the slope of the velocity graph is a positive constant value we know that the acceleration is positive and constant, therefore a horizontal line above the axis on the acceleration graph. The slope on the velocity graph is negative and constant so the acceleration is a constant negative value, therefore a horizontal line below the axis.

Calculating average values Calculating instantaneous values

 “free-fall”  acceleration due to gravity a=9.81m/s 2, down  “at rest”  not moving v=0  “dropped”  starts at rest and free-fall v i =0 and a=9.81m/s 2, down  “constant velocity”  no acceleration a=0  “stops”  final velocity is zero v f =0 These are the most common but be on the lookout for more.