Frequency Measurement of the Terahertz Rotational Lines of H 13 CO + and D 13 CO + Mari Suzuki a, Ryo Oishi a, Fusakazu Matsushima a, Yoshiki Moriwaki.

Slides:



Advertisements
Similar presentations
High sensitivity CRDS of the a 1 ∆ g ←X 3 Σ − g band of oxygen near 1.27 μm: magnetic dipole and electric quadrupole transitions in different bands of.
Advertisements

Production of Molecular Ions Using a Hollow-Cathode Spectrometer Trevor Cross, Nadine Wehres, Mary Radhuber, Anne Carroll, Susanna Widicus Weaver Department.
Submillimeter-wave and far-infrared spectroscopy of high-J transitions of ammonia S. Yu, J.C. Pearson, B.J. Drouin and K. Sung Jet Propulsion Laboratory,
23 June Performance of a Continuous Supersonic Expansion Discharge Source Evaluated by Laser-Induced Fluorescence Spectroscopy.
SUBMILLIMETER-WAVE ROTATIONAL SPECTRA OF DNC T. Amano Department of Chemistry and Department of Physics and Astronomy The University of Waterloo.
Submillimeter-wave Spectroscopy of [HCOOCH 3 ] and [H 13 COOCH 3 ] in the Torsional Excited States Atsuko Maeda, Frank C. De Lucia, and Eric Herbst Department.
MID-IR SATURATION SPECTROSCOPY OF HeH + MOLECULAR ION HSUAN-CHEN CHEN,CHUNG-YUN HSIAO Institute of Photonics Technologies, National Tsing Hua University,
High-J rotational lines of HCO + and its isotopologues measured by using Evenson-type tunable FIR spectrometer R. Oishi, T. Miyamoto, M. Suzuki, Y. Moriwaki,
Supersonic Jet Spectroscopy on TiO 2 Millimeter-wave Spectroscopy of Titanium Monoxide and Titanium Dioxide 63 rd International Symposium on Molecular.
Terahertz spectroscopy of molecules, radiacls and ions using Evenson-type tunable FIR spectrometer Fusakazu Matsushima Department of Physics, University.
Generation of coherent terahertz radiation based on CO 2 laser mixing and its application to molecular spectroscopy of interstellar species Fusakazu Matsushima.
FTIR Spectroscopy of the n4 bands of 14NO3 and 15NO3
New High Precision Linelist of H 3 + James N. Hodges, Adam J. Perry, Charles R. Markus, Paul A. Jenkins II, G. Stephen Kocheril, and Benjamin J. McCall.
A New Spectrometer For High Resolution Measurements of THz Transitions in Cold Carbon Clusters Martin Philipp, Michael Caris, Thomas Giesen, Stephan Schlemmer.
High Precision Mid-Infrared Spectroscopy of 12 C 16 O 2 : Progress Report Speaker: Wei-Jo Ting Department of Physics National Tsing Hua University
DETECTION OF THE AMMONIUM ION IN SPACE SUPPORTED BY AN IMPROVED DETERMINATION OF THE 1 0 − 0 0 ROTATIONAL FREQUENCY FROM THE 4 BAND OF NH 3 D + J. L. DOMÉNECH,
Brian Siller, Andrew Mills, Michael Porambo & Benjamin McCall University of Illinois at Urbana-Champaign.
Fukuoka Univ. A. Nishiyama, A. Matsuba, M. Misono Doppler-Free Two-Photon Absorption Spectroscopy of Naphthalene Assisted by an Optical Frequency Comb.
High-Resolution Spectroscopy of the ν 8 Band of Methylene Bromide Using a Quantum Cascade Laser-Based Cavity Ringdown Spectrometer Jacob T. Stewart and.
Molecular Spectroscopy Symposium June 2011 TERAHERTZ SPECTROSCOPY OF HIGH K METHANOL TRANSITIONS John C. Pearson, Shanshan Yu, Harshal Gupta,
Submillimeter-wave lines of H 2 D + and D 2 H + as probes into chemistry in cold dark clouds T. Amano Institute for Astrophysics and Planetary Sciences.
Friday, June 21, th OSU SYMPOSIUM MOLECULAR SPECTROSCOPY FB06: Cuisset & al Gas phase rovibrational spectroscopy of DMSO, Part II: « Towards a THz.
HIGH PRECISION MID-IR SPECTROSCOPY OF N2O NEAR 4.5 μm Wei-jo (Vivian) Ting and Jow-Tsong Shy Department of Physics National Tsing Hua University Hsinchu,
Precision Measurement of CO 2 Hotband Transition at 4.3  m Using a Hot Cell PEI-LING LUO, JYUN-YU TIAN, HSHAN-CHEN CHEN, Institute of Photonics Technologies,
June 16-20, rd International Symposium on Molecular Spectroscopy Direct Measurements of the Fundamental Rotational Transitions of CD and 13 CH.
Atusko Maeda, Ivan Medvedev, Eric Herbst,
A LABORATORY AND THEORETICAL INVESTIGATION OF THE SILICON SULFUR MOLECULES H 2 SiS AND Si 2 S. MICHAEL C. MCCARTHY 1, PATRICK THADDEUS 1, HARSHAL GUPTA.
High Precision, Sensitive, Near-IR Spectroscopy in a Fast Ion Beam Michael Porambo, Holger Kreckel, Andrew Mills, Manori Perera, Brian Siller, Benjamin.
1 The Red Rectangle Nebula excited by excited species Nadine Wehres, Claire Romanzin, Hans Van Winckel, Harold Linnartz, Xander Tielens.
MW Spectroscopy of  -Alanine and a Search in Orion-KL Shiori Watanabe ( Kyoto Univ. JAPAN ), Satoshi Kubota, Kentarou Kawaguchi ( Okayama Univ. JAPAN.
Copyright All rights reserved. June 25, 2015ISMS, 2015
Precision Laser Spectroscopy of H 3 + Hsuan-Chen Chen 1, Jin-Long Peng 2, Takayoshi Amano 3,4, Jow-Tsong Shy 1,5 1 Institute of Photonics Technologies,
CH 3 D Near Infrared Cavity Ring-down Spectrum Reanalysis and IR-IR Double Resonance S. Luna Yang George Y. Schwartz Kevin K. Lehmann University of Virginia.
Copyright All rights reserved.. Introduction to the hydronium ion (H 3 O + )  H 3 O + has a pyramidal structure and is iso-electronic to ammonia.
Cavity-Enhanced Direct Frequency Comb Velocity Modulation Spectroscopy Laura Sinclair William Ames, Tyler Coffey, Kevin Cossel Jun Ye and Eric Cornell.
Frequency Comb Velocity-Modulation Spectroscopy of HfF + Kevin Cossel Laura Sinclair, Tyler Coffey, Jun Ye, and Eric Cornell OSU 2011 Acknowledgements:
D. Zhao, K.D. Doney, H. Linnartz Sackler Laboratory for Astrophysics, Leiden Observatory, University of Leiden, the Netherlands T he 3 μm Infrared Spectra.
Time-resolved Fourier transform infrared emission spectra of HNC/HCN K. Kawaguchi & A. Fujimoto Okayama University.
Laboratory of Millimetre-wave Spectroscopy of Bologna LABORATORY MEASUREMENTS in SUPPORT of ASTRONOMICAL OBSERVATIONS: ROTATIONAL SPECTROSCOPY up to the.
THE J = 1 – 0 ROTATIONAL TRANSITIONS OF 12 CH +, 13 CH +, AND CD + T. Amano Department of Chemistry and Department of Physics and Astronomy The University.
A. Nishiyama a, K. Nakashima b, A. Matsuba b, and M. Misono b a The University of Electro-Communications b Fukuoka University High Resolution Spectroscopy.
Frequency-comb referenced spectroscopy of v 4 =1 and v 5 =1 hot bands in the 1. 5 µm spectrum of C 2 H 2 Trevor Sears Greg Hall Talk WF08, ISMS 2015 Matt.
Sub-Doppler Jet-Cooled Infrared Spectroscopy of ND 2 H 2 + and ND 3 H + in NH Stretch Fundamental Modes Astronomical Molecular Spectroscopy in the Age.
INDIRECT TERAHERTZ SPECTROSCOPY OF MOLECULAR IONS USING HIGHLY ACCURATE AND PRECISE MID-IR SPECTROSCOPY Andrew A. Mills, Kyle B. Ford, Holger Kreckel,
June 19, 2012 (Toho Univ. a, Univ. Toyama b ) ○Yuta Motoki a, Yukari Tsunoda a, Hiroyuki Ozeki a, Kaori Kobayashi b Hiroyuki Ozeki a, Kaori Kobayashi b.
FAST SCAN SUBMILLIMETER SPECTROSCOPIC TECHNIQUE (FASSST). IVAN R. MEDVEDEV, BRENDA P. WINNEWISSER, MANFRED WINNEWISSER, FRANK C. DE LUCIA, DOUGLAS T. PETKIE,
Terahertz spectroscopy of deuterated methylene bi-radicals, CHD and CD 2 Stéphane Bailleux June 25, 2015 – 70 th ISMS.
An Experimental Approach to the Prediction of Complete Millimeter and Submillimeter Spectra at Astrophysical Temperatures Ivan Medvedev and Frank C. De.
Additional Measurements and Analyses of H 2 17 O and H 2 18 O June 22-25, 2015 ISMS John. C. Pearson, Shanshan Yu, Adam Daly Jet Propulsion Laboratory,
Initial Development of High Precision, High Resolution Ion Beam Spectrometer in the Near- Infrared Michael Porambo, Brian Siller, Andrew Mills, Manori.
High Precision Mid-IR Spectroscopy of 12 C 16 O 2 : ← Band Near 4.3 µm Jow-Tsong Shy Department of Physics, National Tsing Hua University,
A dynamic database of molecular model spectra
Fourier-transform microwave spectroscopy of the CCCCl radical Takashi Yoshikawa, Yoshihiro Sumiyoshi, and Yasuki Endo Graduate School of Arts and Sciences,
The Performance Of A Continuous Supersonic Expansion Discharge Source
The Performance Of A Continuous Supersonic Expansion Discharge Source
The microwave spectroscopy of HCOO13CH3 in the second excited state
Mid-IR Direct Absorption/Dispersion Spectroscopy of a Fast Ion Beam
The microwave spectroscopy of ground state CD3SH
INFRARED SPECTROSCOPY OF DISILICON-CARBIDE, Si2C
The Near-IR Spectrum of CH3D
Comb-Assisted Cavity Ring Down Spectroscopy
Shanshan Yu, Brian J. Drouin, John C. Pearson, and Takayoshi Amano
Hiroyuki Ozeki, Rio Miyahara, Hiroto Ihara, Satoshi Todaka,
Mitsunori ARAKI, Hiromichi WAKO, Kei NIWAYAMA and Koichi TSUKIYAMA○
Tokyo Univ. Science Mitsunori Araki, Yuki Matsushita, Koichi Tsukiyama
Indirect Rotational Spectroscopy of HCO+
Brian Siller, Andrew Mills, Michael Porambo & Benjamin McCall
(Kobe Univ. ) Takumi Nakano, Ryo Yamamoto, Shunji Kasahara
Cavity Ring-down Spectroscopy Of Hydrogen In The nm Region And Corresponding Line Shape Implementation Into HITRAN Yan Tan (a,b), Jin Wang (a),
A. M. Daly, B. J. Drouin, J. C. Pearson, K. Sung, L. R. Brown
Presentation transcript:

Frequency Measurement of the Terahertz Rotational Lines of H 13 CO + and D 13 CO + Mari Suzuki a, Ryo Oishi a, Fusakazu Matsushima a, Yoshiki Moriwaki a,Takayoshi Amano b ( Univ. of Toyama a, Univ. of Waterloo b ) 1

History HCO + : important ion as interstellar molecule Searches in interstellar space (Hershel, ALMA, SOFIA) protoplanetary nebulae, Star forming region, Hale-Bopp Comet Ubiquitous in space: abundance (and its isotopic ratio), location --> good probe of physical/chemical circumstance of interstellar space Basic molecular ion containing carbon --> study of the origin of life Laboratory rotational spectroscopy First found in space in > trigger of laboratory work But limitted to rather low-J states (<~ J=10 ) Extend the J-range with TuFIR Obtain precise frequencies for higer J lines and improve molecular constants. 2

HCO + and laboratory spectroscopy Rotational transitions 1970 Buhl and Snyder; Discovery of “X-ogen” 1975 R. C. Woods et al.; Loboratory identification of “X-ogen” → HCO Buffa et al Tinti et al Cazzoli et al.; Extension to higher-J lines up to J=17←16 Vibration-rotation transitions (IR) 1983 Gudeman et al.; ν 1 band R(0) to R(18) Amano ν 1 band P(10) to R(9) 2007 Verbraak et al.; ν 1 band R(0) to R(5) measured using CRD and cw-OPO 2013 Siller et al.; Lamb-dip with cw-OPO and frequency comb →”Indirect” measurements of rotational transitions up to J=10 Our work H 13 CO + ; J=12←11 to J=22←21 D 13 CO + ; J=14←13 to J=26←25 Improve molecular constants 3

TuFIR spectrometer ν FIR =|ν Ⅰ -ν Ⅱ |±ν MW Specifications ・ range: 0.3THz 〜 6THz ・ precision: about 30kHz ・ simplified structure of the double-layer discharge cell 4

CO 2 fluorescence cell Laser frequency (cavity length) 4.3  m fluorescence 1st derivative Stabilization of the CO 2 laser frequency Accuracy of laser stabilization one CO 2 laser 25kHz → difference frequency 〜 36kHz 5

Extended negative glow discharge cell ・ Discharge current:10 〜 20 mA ・ Voltage 1 〜 3.5 kV 6

2.4Pa 0.3 Pa About 0.6 sccm Gas handling system *sccm=0.01cm 3 /s 7

Measurement of H 13 CO + rotational lines H 13 CO + J=12← (35)MHz H 13 CO + J=21← (102)MHz 8

Measurement of D 13 CO + rotational lines D 13 CO + J=21← (40) MHz (46)MHz D 13 CO + J=24←23 9

Measurement of H 13 CO + transitionAverage FrequencyKöln o-c * J=12< (36) J=14< (36) J=15< (36) J=16< (36) J=17< (36) J=18< (36) J=20< (47) J=21< (96) J=22< (56) *o-c=(present measurement)-(Köln prediction) [MHz] 10

Measurement of D 13 CO + transitionAverage FrequencyKölno-c * J=14< (36) J=15< (36) J=16< (36) J=17< (36) J=18< (36) J=19< (36) J=21< (36) J=22< (36) J=23< (36) J=25< (38) J=26< (50) *o-c=(present measurement)-(Köln prediction) [MHz] 11

Rotational constants of H 13 CO + rotational energy E=BJ(J+1) ー D 〔 J(J+1) 〕 2 +H 〔 J(J+1) 〕 3 +L 〔 J(J+1) 〕 4 … 12 Köln 〔 MHz 〕 present 〔 MHz 〕 B (51) (20) D7.8386(27)× (83) ×10 -2 H6.1(11)×10 -8

Rotational constants of D 13 CO + rotational energy E=BJ(J+1) ー D 〔 J(J+1) 〕 2 +H 〔 J(J+1) 〕 3 +L 〔 J(J+1) 〕 4 … 13 Köln 〔 MHz 〕 present 〔 MHz 〕 B (24) (40) D (65)x (38)x10 -2 H 1.57(65)x (97)x10 -7 L -3.6(20)x (74)x10 -10

Measured lines TuFIR D 13 CO + H 13 CO + H 13 CO + : J=12←11 to 22←21 D 13 CO + : J=14←13 to 26←25 Can we measure still higher-J lines?? No! We could not. 14

Analysis D 13 CO + H 13 CO + →92.6(21) K→115.7(16) K Intensity of spectral line 15

N 2 H + J=5←4 temperature dependence, sub-mm spectrometer (by Amano san) 16 77K (liq. N2 temp) 170K 185K 210K 240K 260K 270K 300K(room temp.)

Simulation of the absorption intensity I=abs. int. μ=dipole moment B=rotational constant 1.554(cm -1 ) h=Planck constant k=Boltzmann constant (cm -1 /deg) 194K 300K 0 K Abs.int (arb.units) 17

Summary ・ Frequency of rotational lines with high J-quantum numbers were measured precisely using TuFIR spectrometer. →H 13 CO + : 9 lines →D 13 CO + : 11 lines ・ Rotational parameters were improved. Now preparing Measurement of 18 O isotopologues : H 12 C 18 O +, D 12 C 18 O + 18

Thank you! 19

J Obs 〔 MHz 〕 Cal 〔 MHz 〕 O-C 〔 MHz 〕 12< (35) < (35) < (35) < (36) < (36) < (36) < (39) < (37) < (37) < (47) < (36) < (36) < (36) < (44) < (44) < (42) < (36) < (36) < (36) < (38) < (39) < (38) < (46) < (45) < (41) H 13 CO +

21 H 13 CO +

D 13 CO + J Obs 〔 MHz 〕 Cal 〔 MHz 〕 O-C 〔 MHz 〕 14< (38) < (38) < (39) < (55) < (36) < (40) < (36) < (36) < (36) < (36) < (37) < (37) < (37) < (37) < (36) < (36) < (36) < (36) < (37) < (37)

D 13 CO + J Obs 〔 MHz 〕 Cal 〔 MHz 〕 O-C 〔 MHz 〕 19< (37) < (40) < (40) < (41) < (57) < (75) < (65) < (48) < (50) < (54) < (45) < (52) < (105) < (160) < (142) < (63) < (62) < (110) < (77) < (80)

24 D 13 CO +

Rotational constant of H 13 CO + rotational energy E=BJ(J+1) ー D 〔 J(J+1) 〕 2 +H 〔 J(J+1) 〕 3 +L 〔 J(J+1) 〕 4 … 25 Köln 〔 MHz 〕 present 〔 MHz 〕 B (51) (30) D (27)x (15)x10 -2 H -6.2(43)x10 -8 L 1.02(42)x10 -10