Frequency Measurement of the Terahertz Rotational Lines of H 13 CO + and D 13 CO + Mari Suzuki a, Ryo Oishi a, Fusakazu Matsushima a, Yoshiki Moriwaki a,Takayoshi Amano b ( Univ. of Toyama a, Univ. of Waterloo b ) 1
History HCO + : important ion as interstellar molecule Searches in interstellar space (Hershel, ALMA, SOFIA) protoplanetary nebulae, Star forming region, Hale-Bopp Comet Ubiquitous in space: abundance (and its isotopic ratio), location --> good probe of physical/chemical circumstance of interstellar space Basic molecular ion containing carbon --> study of the origin of life Laboratory rotational spectroscopy First found in space in > trigger of laboratory work But limitted to rather low-J states (<~ J=10 ) Extend the J-range with TuFIR Obtain precise frequencies for higer J lines and improve molecular constants. 2
HCO + and laboratory spectroscopy Rotational transitions 1970 Buhl and Snyder; Discovery of “X-ogen” 1975 R. C. Woods et al.; Loboratory identification of “X-ogen” → HCO Buffa et al Tinti et al Cazzoli et al.; Extension to higher-J lines up to J=17←16 Vibration-rotation transitions (IR) 1983 Gudeman et al.; ν 1 band R(0) to R(18) Amano ν 1 band P(10) to R(9) 2007 Verbraak et al.; ν 1 band R(0) to R(5) measured using CRD and cw-OPO 2013 Siller et al.; Lamb-dip with cw-OPO and frequency comb →”Indirect” measurements of rotational transitions up to J=10 Our work H 13 CO + ; J=12←11 to J=22←21 D 13 CO + ; J=14←13 to J=26←25 Improve molecular constants 3
TuFIR spectrometer ν FIR =|ν Ⅰ -ν Ⅱ |±ν MW Specifications ・ range: 0.3THz 〜 6THz ・ precision: about 30kHz ・ simplified structure of the double-layer discharge cell 4
CO 2 fluorescence cell Laser frequency (cavity length) 4.3 m fluorescence 1st derivative Stabilization of the CO 2 laser frequency Accuracy of laser stabilization one CO 2 laser 25kHz → difference frequency 〜 36kHz 5
Extended negative glow discharge cell ・ Discharge current:10 〜 20 mA ・ Voltage 1 〜 3.5 kV 6
2.4Pa 0.3 Pa About 0.6 sccm Gas handling system *sccm=0.01cm 3 /s 7
Measurement of H 13 CO + rotational lines H 13 CO + J=12← (35)MHz H 13 CO + J=21← (102)MHz 8
Measurement of D 13 CO + rotational lines D 13 CO + J=21← (40) MHz (46)MHz D 13 CO + J=24←23 9
Measurement of H 13 CO + transitionAverage FrequencyKöln o-c * J=12< (36) J=14< (36) J=15< (36) J=16< (36) J=17< (36) J=18< (36) J=20< (47) J=21< (96) J=22< (56) *o-c=(present measurement)-(Köln prediction) [MHz] 10
Measurement of D 13 CO + transitionAverage FrequencyKölno-c * J=14< (36) J=15< (36) J=16< (36) J=17< (36) J=18< (36) J=19< (36) J=21< (36) J=22< (36) J=23< (36) J=25< (38) J=26< (50) *o-c=(present measurement)-(Köln prediction) [MHz] 11
Rotational constants of H 13 CO + rotational energy E=BJ(J+1) ー D 〔 J(J+1) 〕 2 +H 〔 J(J+1) 〕 3 +L 〔 J(J+1) 〕 4 … 12 Köln 〔 MHz 〕 present 〔 MHz 〕 B (51) (20) D7.8386(27)× (83) ×10 -2 H6.1(11)×10 -8
Rotational constants of D 13 CO + rotational energy E=BJ(J+1) ー D 〔 J(J+1) 〕 2 +H 〔 J(J+1) 〕 3 +L 〔 J(J+1) 〕 4 … 13 Köln 〔 MHz 〕 present 〔 MHz 〕 B (24) (40) D (65)x (38)x10 -2 H 1.57(65)x (97)x10 -7 L -3.6(20)x (74)x10 -10
Measured lines TuFIR D 13 CO + H 13 CO + H 13 CO + : J=12←11 to 22←21 D 13 CO + : J=14←13 to 26←25 Can we measure still higher-J lines?? No! We could not. 14
Analysis D 13 CO + H 13 CO + →92.6(21) K→115.7(16) K Intensity of spectral line 15
N 2 H + J=5←4 temperature dependence, sub-mm spectrometer (by Amano san) 16 77K (liq. N2 temp) 170K 185K 210K 240K 260K 270K 300K(room temp.)
Simulation of the absorption intensity I=abs. int. μ=dipole moment B=rotational constant 1.554(cm -1 ) h=Planck constant k=Boltzmann constant (cm -1 /deg) 194K 300K 0 K Abs.int (arb.units) 17
Summary ・ Frequency of rotational lines with high J-quantum numbers were measured precisely using TuFIR spectrometer. →H 13 CO + : 9 lines →D 13 CO + : 11 lines ・ Rotational parameters were improved. Now preparing Measurement of 18 O isotopologues : H 12 C 18 O +, D 12 C 18 O + 18
Thank you! 19
J Obs 〔 MHz 〕 Cal 〔 MHz 〕 O-C 〔 MHz 〕 12< (35) < (35) < (35) < (36) < (36) < (36) < (39) < (37) < (37) < (47) < (36) < (36) < (36) < (44) < (44) < (42) < (36) < (36) < (36) < (38) < (39) < (38) < (46) < (45) < (41) H 13 CO +
21 H 13 CO +
D 13 CO + J Obs 〔 MHz 〕 Cal 〔 MHz 〕 O-C 〔 MHz 〕 14< (38) < (38) < (39) < (55) < (36) < (40) < (36) < (36) < (36) < (36) < (37) < (37) < (37) < (37) < (36) < (36) < (36) < (36) < (37) < (37)
D 13 CO + J Obs 〔 MHz 〕 Cal 〔 MHz 〕 O-C 〔 MHz 〕 19< (37) < (40) < (40) < (41) < (57) < (75) < (65) < (48) < (50) < (54) < (45) < (52) < (105) < (160) < (142) < (63) < (62) < (110) < (77) < (80)
24 D 13 CO +
Rotational constant of H 13 CO + rotational energy E=BJ(J+1) ー D 〔 J(J+1) 〕 2 +H 〔 J(J+1) 〕 3 +L 〔 J(J+1) 〕 4 … 25 Köln 〔 MHz 〕 present 〔 MHz 〕 B (51) (30) D (27)x (15)x10 -2 H -6.2(43)x10 -8 L 1.02(42)x10 -10