29/09/2016Susy DM Tools1 SUSY DM TOOLS, ENTApP Visitor Program, DESY.

Slides:



Advertisements
Similar presentations
Measurement of Relic Density at the LHC1 Bhaskar Dutta Texas A&M University Bhaskar Dutta Texas A&M University Measurement of Relic Density at the LHC.
Advertisements

Joe Sato (Saitama University ) Collaborators Satoru Kaneko,Takashi Shimomura, Masato Yamanaka,Oscar Vives Physical review D 78, (2008) arXiv:1002.????
Common Benchmarks for FCC Physics John Ellis King’s College London & FCC-ee/TLEP7 Workshop.
Intro to neutralino dark matter Pearl Sandick University of Minnesota.
Comprehensive Analysis on the Light Higgs Scenario in the Framework of Non-Universal Higgs Mass Model M. Asano (Tohoku Univ.) M. Senami (Kyoto Univ.) H.
Predictions of the MSO 10 SM : dark matter and more … Stuart Raby Bonn, Germany August 29, 2005 COSMO 05 w/ R. Dermisek, L. Roszkowski & R.R, de Austri.
The positron excess and supersymmetric dark matter Joakim Edsjö Stockholm University
June 8, 2007DSU 2007, Minnesota Relic Density at the LHC B. Dutta In Collaboration With: R. Arnowitt, A. Gurrola, T. Kamon, A. Krislock, D. Toback Phys.
Enhancement of Line Gamma Ray Signature from Bino-like Dark Matter Annihilation due to CP Violation Yoshio Sato (Saitama University/Technical University.
1 Status of the SUSY Les Houches Accord 2 project RPV, CPV, FLV, NMSSM & more S. Heinemeyer (P. Skands) February 2006.
Mia Schelke, Ph.D. Student The University of Stockholm, Sweden Cosmo 03.
IDM 2002, September 4, 2002Joakim Edsjö, Paolo Gondolo, Joakim Edsjö, Lars Bergström, Piero Ullio and Edward A. Baltz.
A profile likelihood analysis of the CMSSM with Genetic Algorithms Yashar Akrami Collaborators: Pat Scott, Joakim Edsjö, Jan Conrad and Lars Bergström.
6/28/2015S. Stark1 Scan of the supersymmetric parameter space within mSUGRA Luisa Sabrina Stark Schneebeli, IPP ETH Zurich.
LHC / ILC / Cosmology Interplay Sabine Kraml (CERN) WHEPP-9, Bhubaneswar, India 3-14 Jan 2006.
Significant enhancement of Bino-like dark matter annihilation cross section due to CP violation Yoshio Sato (Saitama University) Collaborated with Shigeki.
EuroGDR, 13 th December 2003 Dan Tovey CERN, 18/03/2004 G. Bélanger 1 Uncertainties in the relic density calculations in mSUGRA B. Allanach, G. Bélanger,
Quintessino model and neutralino annihilation to diffuse gamma rays X.J. Bi (IHEP)
SUSY Dark Matter Collider – direct – indirect search bridge. Sabine Kraml Laboratoire de Physique Subatomique et de Cosmologie Grenoble, France ● 43. Rencontres.
Reconstruction of Fundamental SUSY Parameters at LHC and LC
Flavour and CP Violation in Supersymmetric Models John Ellis Theory Division, LHCb, Jan. 27 th, 2009.
Direct and Indirect Dark Matter Detection in Models with a Well-Tempered Neutralino Eun-Kyung Park Florida State University in collaboration with H. Baer.
Neutralino Dark Matter in Light Higgs Boson Scenario (LHS) The scenario is consistent with  particle physics experiments Particle mass b → sγ Bs →μ +
Dark matter in split extended supersymmetry in collaboration with M. Quiros (IFAE) and P. Ullio (SISSA/ISAS) Alessio Provenza (SISSA/ISAS) Newport Beach.
1 Supersymmetry Yasuhiro Okada (KEK) January 14, 2005, at KEK.
Inclusive analysis of supersymmetry in EGRET-point with one-lepton events: pp → 1ℓ + 4j + E Tmiss + Х V.A. Bednyakov, S.N. Karpov, E.V. Khramov and A.F.
Lake Louise - February Detection & Measurement of gamma rays in the AMS-02 Detector J. Bolmont - LPTA - IN2P3/CNRS Montpellier - France.
SUSY fits: Implications of LHC data on Constrained SUSY Models Albert De Roeck on behalf of the Mastercode collaboration Exp O. Buchmueller, R. Cavanaugh,
Summary of indirect detection of neutralino dark matter Joakim Edsjö Stockholm University
1 Extending the SUSY Les Houches Accord P. Skands (Fermilab) SUSY EuroGDR, November 2005, Barcelona.
IDM 2000, September, 2000 Joakim Edsjö, Paolo Gondolo, Joakim Edsjö, Lars Bergström, Piero Ullio and Edward A. Baltz.
SUSY in the sky: supersymmetric dark matter David G. Cerdeño Institute for Particle Physics Phenomenology Based on works with S.Baek, K.Y.Choi, C.Hugonie,
22 December 2006Masters Defense Texas A&M University1 Adam Aurisano In Collaboration with Richard Arnowitt, Bhaskar Dutta, Teruki Kamon, Nikolay Kolev*,
Neutralino relic density in the CPVMSSM and the ILC G. Bélanger LAPTH G. B, O. Kittel, S. Kraml, H. Martyn, A. Pukhov, hep-ph/ , Phys.Rev.D Motivation.
Overview of Supersymmetry and Dark Matter
1 Status Report
Convention and Project Jan Kalinowski (Warsaw University) for the SPA Collaboration P.M.Zerwas, H.U.Martyn, W.Hollik, W.Kilian, W.Majerotto, W.Porod +
V. Bertin - CPPM - MANTS Paris - Sept'10 Indirect search of Dark Matter with the ANTARES Neutrino Telescope Vincent Bertin - CPPM-Marseille on behalf.
Supersymmetry Basics: Lecture II J. HewettSSI 2012 J. Hewett.
STAU CLIC Ilkay Turk Cakir Turkish Atomic Energy Authority with co-authors O. Cakir, J. Ellis, Z. Kirca with the contributions from A. De Roeck,
Phys. Lett. B646 (2007) 34, (hep-ph/ ) Non-perturbative effect on thermal relic abundance of dark matter Masato Senami (University of Tokyo, ICRR)
Daniel E. López-Fogliani, ENTAPp meeting 2008, Hamburg. ✗ NMHDECAY Ulrich Ellwanger, Cyril Hugonie, John F. Gunion ✗ NMSPEC Ulrich Ellwanger & Cyril Hugonie.
Phenomenlogical Aspects of Mirage Mediation Yeong Gyun Kim (Sejong U. & KAIST) Neutralino Dark Matter in Mirage Mediation (thermal relic density, direct.
Indirect dark matter search with the balloon-borne PEBS detector
Origin of large At in the MSSM with extra vector-like matters
The Case of Light Neutralino Dark Matter
ONE-PARAMETER MODEL FOR THE SUPERWORLD
Dark Matter Phenomenology of the GUT-less CMSSM
Focus-Point studies at LHC
Outline Find a signal, have champagne Calculating the (relic) density
MSSM4G: MOTIVATIONS AND ALLOWED REGIONS
D. P. Roy Homi Bhabha Centre for Science Education
Evidence for WIMP Dark Matter
micrOMEGAs_2.2 : direct detection and new models
Based on arXiv: with G. Bélanger, O. Kittel, H.U. Martyn and A. Pukhov
Supersymmetric Dark Matter
mSUGRA SUSY Searches at the LHC
非最小超对称唯象研究: 工作汇报 杨 金 民 中科院 理论物理所 南开大学.
Collider signatures of gravitino dark matter with a sneutrino NLSP
SUSY Searches with ZEUS
Analysis of enhanced effects in MSSM from the GUT scale
SUSY SEARCHES WITH ATLAS
Relic density : dependence on MSSM parameters
Dark Matter Explanation in Singlet Extension of MSSM
Particle Physics and Cosmology in the Co-Annihilation Region
How Heavy can Neutralino Dark Matter be?
SUSY parameter determination at LHC and ILC
Can new Higgs boson be Dark Matter Candidate in the Economical Model
Presentation transcript:

29/09/2016Susy DM Tools1 SUSY DM TOOLS, ENTApP Visitor Program, DESY

29/09/2016Susy DM Tools2 Outline MSSM NMSSM: Daniel Lopez Fogliani

29/09/2016Susy DM Tools3 Motivation: computation of neutralino relic density (1) Early Universe dense and hot; WIMPs in thermal equilibrium Universe expands and cools; WIMP density is reduced through pair annihilation; Boltzmann suppression: n~e -m/T Temperature and density too low for WIMP annihilation to keep up with expansion rate → freeze out Final dark matter density:  h 2 ~ 1/ Thermally avaraged cross section of all annihilation channels

29/09/2016Susy DM Tools4 MSSM: many possible processes Complete spectrum needed to compute  h 2 of the neutralino

29/09/2016Susy DM Tools5 Ingredients for computation of Neutralino masses and decomposition bino, wino, higgsino admixture Sfermion masses (bulk, coannhilation)‏ or at least lower limits on them, and mixing angles Higgs masses and widths: h,H,A tan  Yukawa couplings, etc. General MSSM has ~120 free parameters. Models of SUSY-breaking give relations between the soft terms → more predictive, easier to analyse

29/09/2016Susy DM Tools6 GUT scale EW scale Boundary conditions of SUSY breaking model e.g. m 0, m 1/2, A 0 Boundary conditions: Gauge and Yukawa mZ Run gauge and Yukawa couplings up to GUT scale,  1 =  2 =  3, 2 x GeV SUSY scale Run all parameters back down to SUSY scale Radiative electroweak symmetry breaking, threshold corrections to sparticle masses (= shift from running to pole masses)‏ Interation until required precision is achieved Run all parameters back down to EW scale Spectrum computation within a model of SUSY breaking

29/09/2016Susy DM Tools7 Gaugino masses M 1 :M 2 :M 3 =       Higgs mass parameters m H2 2 < 0 due to heavy top effect → radiative EWSB !!  from minimalization condition Slepton masses stay ~ m 0 Squark masses driven ~ M 3

29/09/2016Susy DM Tools8 State of the Art 2-loop RGEs for gauge and Yukawa couplings as well as for all SUSY-breaking parameters 1-loop SUSY corrections to gauge and Yukawa couplings Higgs potential at 2-loops Sparticle pole masses at 1-loop Quite a complicated task → public tools Isajet, Softsusy, Spheno, Suspect

29/09/2016Susy DM Tools9 Comparison Codes

29/09/2016Susy DM Tools10 SUSY Les Houches Accord (SLHA)‏ Text-file based I/O standard to interface SUSY tools P. Skands et al., hep-ph/

29/09/2016Susy DM Tools11 SLHA interface Block MODSEL # Select model 1 1 # sugra Block SMINPUTS # Standard Model inputs e+02 # alpha^(-1) SM MSbar(MZ)‏ e-05 # G_Fermi e-01 # alpha_s(MZ) SM MSbar e+01 # MZ(pole)‏ e+00 # mb(mb) SM MSbar e+02 # mtop(pole)‏ Block MINPAR # Input parameters e+02 # m e+02 # m e+01 # tanb e+00 # sign(mu)‏ e+02 # A0

29/09/2016Susy DM Tools12 SLHA Output fd

29/09/2016Susy DM Tools13 SUSY Les Houches Accord + F77 I/O Library by T. Hahn (now also SLHA2)‏ SUSY MODEL MSSM SUGRA GMSB AMSB NMSSM RPV CPV FLV … CPSUPERH FEYNHIGGS ISASUSY NMHDECAY SOFTSUSY SPHENO SUSPECT … SPECTRUM CALCULATOR CALC/COMPHEP ILCSLEPTON GRACE HERWIG (++)‏ ISAJET PROSPINO PYTHIA SHERPA SMADGRAPH SUSYGEN WHIZARD … MC EVENT GEN / XS CALCULATOR MICRΩS DARKSUSY NEUTDRIVER PLATON (?)‏ CDM PACKAGE DECAY PACKAGE FEYNHIGGS FCHDECAY HDECAY NMHDECAY SDECAY SPHENO spectru m spc+de c sp c input spectru m      FITTINO, SFITTER, SUPERBAYESFITTERS  

29/09/2016Susy DM Tools14 How is done in practice?

29/09/2016Susy DM Tools15 Micromegas

29/09/2016Susy DM Tools16....

29/09/2016Susy DM Tools17 Code organization

29/09/2016Susy DM Tools18 New developments

29/09/2016Susy DM Tools19 Outlook

29/09/2016Susy DM Tools20 DarkSusy Either all low-energy parameters can be given by the user, or MSSM or mSUGRA* parameters can be used. *) Interface to ISASUGRA, SUSPECT DarkSUSY is a set of Fortran routines for calculations of relic densities and different direct and indirect detection rates in supersymmetric models.

29/09/2016Susy DM Tools21 Calculable quantities Vertices Mass spectrum Accelerator bounds Relic density Scattering cross sections Rates in neutrino telescopes Fluxes from the halo: antiprotons, positrons, continuum gammas, gamma lines (  and  ) and neutrinos.

29/09/2016Susy DM Tools22 Accelerator bounds Routines to check current accelerator constraints are available: m H 2 b  s  m  + sfermion masses(g-2)  etc It is easy to replace the standard routines with your own ones.

29/09/2016Susy DM Tools23 Scattering cross sections The scattering cross sections on protons and neutrons are calculated. The quark and spin content of the nucleons can be changed by the user.

29/09/2016Susy DM Tools24 Neutrino telescopes From WIMP annihilation in the Earth/Sun, we can calculate: – the neutrino flux – the neutrino to muon conversion rate – the neutrino-induced muon flux Both differential and integrated fluxes/rates can be obtained. The new population of WIMPs (Damour-Krauss) that have scattered in the outskirts of the Sun can be included.

29/09/2016Susy DM Tools25 Antiprotons from the halo Different propagation models can be used: Chardonnay et el, Bottino et al, Bergström et al *. Energy losses of antiprotons are included. Many diffusion model parameters are adjustable. Solar modulation can be included. Fluxes from a clumpy halo can be calculated. *) Default

29/09/2016Susy DM Tools26 Positrons from the halo Different diffusion models included: Kamionkowski-Turner and Baltz-Edsjö with * and without a cut-off in the diffusion constant. Both integrated and differential fluxes can be obtained.

29/09/2016Susy DM Tools27 Gammas from the halo The flux in a given direction (averaged or not averaged over detector resolution  ) can be obtained for – continuum gamma rays – monochromatic gamma lines from  – monochromatic gamma lines from Z  Both differential and integrated fluxes can be obtained.

29/09/2016Susy DM Tools28 Neutrinos from the halo From a given direction (averaged or not averaged over detector resolution  ) we can obtain the – neutrino flux – neutrino to muon conversion rate – neutrino-induced muon flux Both differential and integrated fluxes/rates can be obtained.

29/09/2016Susy DM Tools29 Code organization The code is written in Fortran. The user has to provide a main program – an example program is provided. Current Version 4.1:

29/09/2016Susy DM Tools30 Comparisons

29/09/2016Susy DM Tools31 mSUGRA parameter space GUT-scale boundary conditions: m 0, m 1/2, A 0 [plus tan , sgn(  )] 4 regions with right  h 2  bulk (excl. by m h from LEP)  co-annihilation  Higgs funnel (tan  ~ 50)‏  focus point (higgsino scenario)‏

29/09/2016Susy DM Tools32 Fixing SM parameters is not enough Impact on CDM varying mtop

29/09/2016Susy DM Tools33 A popular approach: chi-square analysis tan  = 10 m 0 fitted to WMAP m t fixed to central value Ellis et al, JHEP 0605 (2006) 005 (hep-ph/ ) tan  = 50 m 0 fitted to WMAP m t fixed to central value “In that framework [CMSSM with a neutralino LSP], the range of m 0 is very restricted by the CDM density determined by WMAP and other observations, for any set of assumed values of tan , m 1/2 and the trilinear soft supersymmetry-breaking parameter A 0 ” neutralino mass (GeV) ‏ Chi-squared grid

29/09/2016Susy DM Tools34 Bayes’ Theorem prior posterior likelihood  Probability density Bayesian Parameter Estimation

29/09/2016Susy DM Tools35 11 22 11 P 11 P 11 22  2 INTEGRATED OVER  2 FIXED Marginalization

29/09/2016Susy DM Tools36 (1) Select a random point in parameter space,  0 Compute P(  0 ) = Like*Prior (2) Propose a new point,  1 with transition probability T, satisfying T(  0,  1 ) = T(  1,  0 )‏ (3) Evaluate P(  1 ) = Like*Prior (4) If P(  1 ) > P(  0 ) move to  1 else move to  1 with probability = P(  1 )/P(  o )‏ MCMC = Markov Chain Monte Carlo Obtain a Markov Chain:  i, i = 1,..., N The density of points is proportional to the target distribution, P(  ) Number of points scales as the number of model's parameters MCMC algorithm

29/09/2016Susy DM Tools37 Bayesian Analysis of the CMSSM CMSSM parameters ‘Nuisance’ parameters Observables (with full likelihood)‏ SUSY mass limits (LEPII), Higgs limits, BR’s, g-2, EW observables, cosmological CDM abundance

29/09/2016Susy DM Tools38 What we have?

29/09/2016Susy DM Tools39 Not very much apart from setting an upper limit to m 1/2 ! (WMAP1 data) ‏ Ruiz de Austri, Trotta, Roszkowski (2006) ‏ Just how constraining is  m h 2 ?

29/09/2016Susy DM Tools40 Fully marginalised constraints vs chi-sq fits m t fixed tan  = 10 fixed m 0 fitted to WMAP m t, m b,  S,  EM, tan , constrained through data excepting and integrated over Ellis et al (2005), hep-ph/ Ruiz de Austri et al (2007 ‏ ) ‏ Telling the truth with statistics m0m0

29/09/2016Susy DM Tools41 Higgs Searches

29/09/2016Susy DM Tools42 Probability density 4 TeV prior 2 TeV prior 4 TeV prior, no g-2 Sleptons, squarks: prior and g-2 dependent Probability density SUSY at the LHC Eg, gluino mass < 2.7 TeV with 78%prob ROBUST

29/09/2016Susy DM Tools43 Dark matter direct detection LHC 1 event/Ton/year LHC 1 event/Kg/year

29/09/2016Susy DM Tools44 SuperBayeS.org

29/09/2016Susy DM Tools45 Thank you !