The Tunka Cherenkov Array Д.В.Чернов, Е.Е.Коростелева, Л.А.Кузьмичев, В.В.Просин, И.В.Яшин НИИЯФ МГУ, Москва, Россия Н.М.Буднев, О.А.Гресс, Т.И.Гресс,

Slides:



Advertisements
Similar presentations
AGASA Results Max-Planck-Institut für Physik, München, Germany Masahiro Teshima for AGASA collaboration at 3 rd Int. Workshop on UHECR, Univ. Leeds.
Advertisements

Antonis Leisos KM3NeT Collaboration Meeting the calibration principle using atmospheric showers the calibration principle using atmospheric showers Monte.
The Composition of Ultra High Energy Cosmic Rays Through Hybrid Analysis at Telescope Array Elliott Barcikowski PhD Defense University of Utah, Department.
Application for Pierre Auger Observatory.
TeVPA, July , SLAC 1 Cosmic rays at the knee and above with IceTop and IceCube Serap Tilav for The IceCube Collaboration South Pole 4 Feb 2009.
How to Build a Neutrino Oscillations Detector - Why MINOS is like it is! Alfons Weber March 2005.
The TA Energy Scale Douglas Bergman Rutgers University Aspen UHECR Workshop April 2007.
AGASA Masahiro Teshima Max-Planck-Institut für Physik, München, Germany for AGASA collaboration.
IceCube 1400 m 2400 m AMANDA South Pole IceTop Skiway 80 Strings 4800 PMT Instrumented volume: 1 km3 (1 Gt) IceCube is designed to detect neutrinos of.
Tunka Experiment: Towards 1км 2 EAS Cherenkov Array at the Tunka Valley N.Budnev 2, D.Chernov 1, O.Gress 2, N.Kalmykov 1, Е.Korosteleva 1, V.Kozhin 1,
A neural network approach to high energy cosmic rays mass identification at the Pierre Auger Observatory S. Riggi, R. Caruso, A. Insolia, M. Scuderi Department.
EHE Search for EHE neutrinos with the IceCube detector Aya Ishihara for the IceCube collaboration Chiba University.
Status of Cosmic Rays Physics at the Knee Andrea Chiavassa Università and INFN Torino NOW 2006 Otranto 9-16 September 2006.
Tunka-133: status and results L.A.Kuzmichev (SINP MSU) On behalf on the Tunka Collaboration Moscow, May 2011.
Size and Energy Spectra of incident cosmic radiation obtained by the MAKET - ANI surface array on mountain Aragats. (Final results from MAKET-ANI detector)‏
Outrigger Timing Calibration & Reconstruction Milagro – 11/17/03 Shoup – 1 Purpose: To incorporate outrigger hits in event angle fitting Additionally incorporated.
Tunka-133: results and status L.A.Kuzmichev (MSU SINP) On behalf of the Tunka Collaboration th ECRS, MOSCOW.
The measurement of the average shower development profile 高能所:张丙开 导师:曹臻、王焕玉 南京 Apr. 28, 2008.
EAS Reconstruction with Cerenkov Photons Shower Simulation Reconstruction Algorithm Toy MC Study Two Detector Configuration Summary M.Z. Wang and C.C.
Atmospheric shower simulation studies with CORSIKA Physics Department Atreidis George ARISTOTLE UNIVERSITY OF THESSALONIKI.
Tunka-133: status, all particle spectrum, mass composition and future plans. L.A.Kuzmichev (SINP MSU) On behalf of the Tunka Collaboration June, 19, 2011,
Ronald Bruijn – 10 th APP Symposium Antares results and status Ronald Bruijn.
NESTOR SIMULATION TOOLS AND METHODS Antonis Leisos Hellenic Open University Vlvnt Workhop.
Status and first results of the KASCADE-Grande experiment
Properties of giant air showers and the problem of energy estimation of initial particles M.I. Pravdin for Yukutsk Collaboration Yu.G. Shafer Institute.
AGASA Results Masahiro Teshima for AGASA collaboration
XXXI International Cosmic Ray Conference, ICRC 2009 Lodz, Poland, July 7-15, 2009 Time structure of the Extensive Air Shower front with the ARGO-YBJ experiment.
Detection of electromagnetic showers along muon tracks Salvatore Mangano (IFIC)
Data Processing for the Sudbury Neutrino Observatory Aksel Hallin Queen’s, October 2006.
Hadronic interaction studies with the ARGO-YBJ experiment (5,800 m 2 ) 10 Pads (56 x 62 cm 2 ) for each RPC 8 Strips (6.5 x 62 cm 2 ) for each Pad ( 
Tunka Experiment: Towards 1км 2 EAS Cherenkov Array B.K.Lubsandorzhiev for TUNKA Collaboration.
The single shower calibration accuracy is about 6.7 degrees but the accuracy on the mean value (full data set calibration accuracy) scales down inversely.
EAS Time Structures with ARGO-YBJ experiment 1 - INFN-CNAF, Bologna, Italy 2 - Università del Salento and INFN Lecce, Italy A.K Calabrese Melcarne 1, G.Marsella.
Temporal and spatial structure of the Extensive Air Shower front with the ARGO- YBJ experiment 1 - INFN-CNAF, Bologna, Italy 2 - Università del Salento.
June 6, 2006 CALOR 2006 E. Hays University of Chicago / Argonne National Lab VERITAS Imaging Calorimetry at Very High Energies.
Atmospheric Radio Soundings in Argentina - Effects of Air Density Variations - Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Bianca KeilhauerTokyo,
Comparison of different km3 designs using Antares tools Three kinds of detector geometry Incoming muons within TeV energy range Detector efficiency.
The KASCADE-Grande Experiment: an Overview Andrea Chiavassa Universita’ di Torino for the KASCADE-Grande Collaboration.
Cosmic Rays from to eV. Open Problem and Experimental Results. (KASCADE-Grande view) Very High Energy Phenomena in the Universe XLIV th Rencontres.
Detecting Air Showers on the Ground
NEVOD-DECOR experiment: results and future A.A.Petrukhin for Russian-Italian Collaboration Contents MSU, May 16, New method of EAS investigations.
Tunka-133: Primary Cosmic Ray Energy Spectrum in the energy range 6·10 15 – eV L.A.Kuzmichev (SINP MSU) On behalf on the Tunka Collaboration 32th.
AGASA Results Masahiro Teshima Max-Planck-Institut für Physik, München, Germany for AGASA collaboration.
Lingling Ma IHEP China Measurement of Cosmic rays with LHAASO at 10PeV~100PeV 4th Workshop on Air Shower Detection at High Altitude Institute of High Energy.
Space-time structure of signals in scintillation detectors of EAS L.G. Dedenko, G.F. Fedorova, T.M. Roganova and D.A. Podgrudkov.
1 Cosmic Ray Physics with IceTop and IceCube Serap Tilav University of Delaware for The IceCube Collaboration ISVHECRI2010 June 28 - July 2, 2010 Fermilab.
The Tunka-133 EAS Cherenkov light array: status 2011 N.Budnev, Irkutsk State University, on behalf of the Tunka Collaboration.
Non-imaging Air Cherenkov Technique for studies of Cosmic Ray Origin and Gamma- astronomy. L.A.Kuzmichev (SINP MSU) On behalf on the Tunka and SCORE Collaboration.
A Method of Shower Reconstruction from the Fluorescence Detector M.Giller, G.Wieczorek and the Lodz Auger group GZK-40 Moscow Workshop, May 2006.
Background rejection methods for tens of TeV gamma-ray astronomy applicable to wide angle timing arrays.
The dynamic range extension system for the LHAASO-WCDA experiment
Measurement of high energy cosmic rays by the new Tibet hybrid experiment J. Huang for the Tibet ASγCollaboration a a Institute of high energy physics,
"Tunka-133: Results of 3 Year Operation"
Experiment Tunka : High energy cosmic rays and Gamma-ray astronomy
L.L.Ma for LHAASO collaboration Beijing China
Expectation of Cosmic Ray Energy Spectrum with LHAASO
Andrea Chiavassa Universita` degli Studi di Torino
Vasily Prosin (SINP MSU)
Systematic uncertainties in MonteCarlo simulations of the atmospheric muon flux in the 5-lines ANTARES detector VLVnT08 - Toulon April 2008 Annarita.
Performance of the AMANDA-II Detector
Particle Physics LECTURE 7
Results on the Spectrum and Composition of Cosmic Rays
Litao Zhao Liaoning University&IHEP
A new 1 km2 EAS Cherenkov Array in the Tunka Valley
Karen Andeena, Katherine Rawlinsb, Chihwa Song*a
Telescope Array Experiment Status and Prospects
The Aperture and Precision of the Auger Observatory
P. Sapienza, R. Coniglione and C. Distefano
Hellenic Open University
Studies and results at Pierre Auger Observatory
Presentation transcript:

The Tunka Cherenkov Array Д.В.Чернов, Е.Е.Коростелева, Л.А.Кузьмичев, В.В.Просин, И.В.Яшин НИИЯФ МГУ, Москва, Россия Н.М.Буднев, О.А.Гресс, Т.И.Гресс, Л.В.Паньков, Ю.В.Парфенов, Ю.А.Семеней НИИПФ ИГУ, Иркутск, Россия Р.В.Васильев, Б.К.Лубсандоржиев, А.И.Панфилов, П.Г.Похил ИЯИ РАН, Москва, Россия C.Spiering, R.Wischnewski, DESY Zeuthen, Zeuthen, Germany

1 TeV

The Site: Tunka Valley, 675m altitude

The Tunka-25 array in 2003 „Far detector“ 25 QUASAR-370 tubes - 37 cm diameter - integrating 4 EMI D668 tubes - 20 cm diameter - fiber read-out, - FADC

QUASAR-370 in its container

EMI D668 for pulse form analysis - PMTs - fibers - optical receivers - FADCs from DESY

Electronics for pulse shape analysis delay 50 nc FADC DL515 in start run 1 D C 8 µsec R Trigger Reset VME delay 1.6 µsec Trigger from TUNKA-25 Optical cable Discr. Controller PC

Measured waveform and parametrization Time code in units of 2 nsec

Sample of atmospheric Cherenkov light pulse EXPERIMENT: F FALL (T)=A QM ·exp(-(T-T QM )/T FALL ), for T > T QM F FRONT (T)=exp(-((T-T QM )/T FRONT ) 2 )·F FALL (T), for T≤T QM

Measured FWHM as function of Left: distance shower-axis  PMT Right: zenith angle of shower

Correlation between depth of shower maximum and pulse width at different distances R to the shower axis (Corsika)

FWHM as function of shower energy Assuming that the data describe Helium, the dashed curves are expected for protons and Iron, respectively

up to R ~ 30 m: exponential Corsika,2000 m Light intensity This part depends mainly on energy This part depends mainly on distance to shower maximum E = 2 PeV

The same dependence as measured in QUEST Control experiment at Gran Sasso (EAS Top), with the number of electrons measured by scintillation counter

up to R ~ 30 m exponential R 1 One free parameter: P Corsika and parametrization

Parameter P as function of distance to shower maximum

Relation between Q, P, and energy

Тheoretical accuracy of energy reconstruction Empty circles: protons Full circles: iron protons iron

σH max = 0.3 km mean shift: ΔH = 0.15 km for p ΔH = km for Fe H max = ·(P+2.73) 2, [km] CORSIKA: Measurement of a distance to EAS maximum with the Cherenkov light LDF steepness parameter P

CORSIKA: Measurement of relative position of EAS maximum with Cherenkov light pulse FWHM at R=250 m from shower axis (X 0 /cos(θ) – X max ) = 1659 – 1006 · log 10 (FWHM/ns), g/cm 2

Results: hours Tunka million triggers events with E 0 > 6·0 14 eV and < 25° - Fit Q(R) and determine Q 1, P,  shower maximum  energy and atomic weight

TIBET KASCADE

Mean depth of EAS maximum

- Spase/Amanda

The future m² water tank (muons at 200 m distance, PeV showers) 2. Tunka-133, with 1 km² area µ e 1-2 m 3 m

Photomultipliers – 20 cm EMI with FADC read-out 19 clusters, each with 7 huts Energy range: up to eV The Tunka-133 Project

Expected statistic from 1 year operation ( 400 hours): > 3·10 15 eV ~ events > eV ~ 200 events > eV ~ 5 events TUNKA-133