TITLE” ENERGY BANDS OM INSTITUTE OF TECHNOLOGY

Slides:



Advertisements
Similar presentations
P-N JUNCTION.
Advertisements

ELECTRICAL CONDUCTIVITY
LECTURE 2 CONTENTS MAXWELL BOLTZMANN STATISTICS
Semiconductor Device Physics
Energy Band View of Semiconductors Conductors, semiconductors, insulators: Why is it that when individual atoms get close together to form a solid – such.
CHAPTER 3 Introduction to the Quantum Theory of Solids
CHAPTER 3 CARRIER CONCENTRATIONS IN SEMICONDUCTORS
1 Motivation (Why is this course required?) Computers –Human based –Tube based –Solid state based Why do we need computers? –Modeling Analytical- great.
CHAPTER 2 ENERGY BANDS AND EFFECTIVE MASS
Band Theory & Optical Properties in solids
Lecture 2 OUTLINE Semiconductor Fundamentals (cont’d) – Energy band model – Band gap energy – Density of states – Doping Reading: Pierret , 3.1.5;
Electrons and Holes ECE Intrinsic Carrier Concentration Intrinsic carriers are the free electrons and holes that are generated when one or more.
SEMICONDUCTOR PHYSICS. BAND THEORY OF SOLIDS  Ge and Si are pure semiconductors  Electronic configuration of Si is  1S 2, 2S 2, 2P 6, 3S 2, 3P 2.
SEMICONDUCTORS Semiconductors Semiconductor devices
Textbook: Electronic Devices and Circuit Theory Robert L.Boylested.
Lecture 25: Semiconductors
Department of EECS University of California, Berkeley EECS 105 Fall 2003, Lecture 6 Lecture 6: Integrated Circuit Resistors Prof. Niknejad.
Electron & Hole Statistics in Semiconductors More Details
ECE 250 – Electronic Devices 1 ECE 250 Electronic Device Modeling.
Taklimat UniMAP Universiti Malaysia Perlis WAFER FABRICATION Hasnizah Aris, 2008 Lecture 2 Semiconductor Basic.
1 Free Electron Model for Metals Metals are very good at conducting both heat and electricity. A lattice of in a “sea of electrons” shared between all.
EEE 3394 Electronic Materials Chris Ferekides Fall 2014 Week 8.
EEE 3394 Electronic Materials
BASIC ELECTRONICS Module 1 Introduction to Semiconductors
ELECTRONIC PROPERTIES OF MATTER - Semi-conductors and the p-n junction -
Dr. Nasim Zafar Electronics 1 EEE 231 – BS Electrical Engineering Fall Semester – 2012 COMSATS Institute of Information Technology Virtual campus Islamabad.
Lecture 1 OUTLINE Semiconductors, Junction, Diode characteristics, Bipolar Transistors: characteristics, small signal low frequency h-parameter model,
Topic #1: Bonding – What Holds Atoms Together?
BASICS OF SEMICONDUCTOR
President UniversityErwin SitompulSDP 2/1 Dr.-Ing. Erwin Sitompul President University Lecture 2 Semiconductor Device Physics
Band Theory of Electronic Structure in Solids
Energy Bands and Charge Carriers in Semiconductors
EEE209/ECE230 Semiconductor Devices and Materials
Band Theory of Solids.
Chapter Energy Bands and Charge Carriers in Semiconductors
CHAPTER 1 SOLID STATE PHYSICS
Metallic Solids Metallic bond: The valence electrons are loosely bound. Free valence electrons may be shared by the lattice. The common structures for.
Operational Amplifier
“Semiconductor Physics”
Conduction of Electricity in Solids
Today’s objectives- Semiconductors and Integrated Circuits
Electrical conductivity Energy bands in solids
Lecture 2 OUTLINE Important quantities
Do all the reading assignments.
Introduction to Semiconductor Material and Devices.
I I T M SEMICONDUCTOR Presentation On IITM, E C-2ND YEAR 0915EC081070

Band Theory of Electronic Structure in Solids
SEMICONDUCTORS Semiconductors Semiconductor devices
3.1.4 Direct and Indirect Semiconductors
Insulators, Semiconductors, Metals
Elementary Particles (last bit); Start Review for Final
EECS143 Microfabrication Technology
Lecture 2 OUTLINE Semiconductor Fundamentals (cont’d)
Band theory.
Basic Semiconductor Physics
Semiconductors Chapter 25.
Energy Band Diagram (revision)
Semiconductor crystals
The Solid State Band Theory of Solids
Spin quantum number – ms
EE105 Fall 2007Lecture 1, Slide 1 Lecture 1 OUTLINE Basic Semiconductor Physics – Semiconductors – Intrinsic (undoped) silicon – Doping – Carrier concentrations.
Lecture 1 OUTLINE Basic Semiconductor Physics Reading: Chapter 2.1
PDT 264 ELECTRONIC MATERIALS
Energy Band View of Semiconductors
SEMICONDUCTOR PHYSICS DEPARTMENT OF APPLIED PHYSICS
ELECTRICAL PROPERTIES
Conduction of Electricity in Solids
Solid State Electronics ECE-1109
Unit-2 Dr.A.L.Jerald Antony Raj, M.Sc.,M.Ed.,M.Phil(Che).,M.Phil(Edn).,Ph.D.,NET.,D.Acu Associate Professor, Pope John Paul II College of Education.
Presentation transcript:

TITLE” ENERGY BANDS OM INSTITUTE OF TECHNOLOGY Subject: Electronic Devices & Circuit (2131006) Semester: 03 Prepared by: 121030111024 121030111028

Semiconductors, Insulators and Metals The electrical properties of metals and insulators are well known to all of us. Everyday experience has already taught us a lot about the electrical properties of metals and insulators. But the same cannot be said about “semiconductors”. What happens when we connect a battery to a piece of a silicon; would it conduct well ? or would it act like an insulator ?

σmetals ~1010 /Ω-cm σinsulators ~ 10-22 /Ω-cm The name “semiconductor” implies that it conducts somewhere between the two cases (conductors or insulators) Conductivity : σmetals ~1010 /Ω-cm σinsulators ~ 10-22 /Ω-cm The conductivity (σ) of a semiconductor (S/C) lies between these two extreme cases. S/C

.:: The Band Theory of Solids ::. The electrons surrounding a nucleus have certain well-defined energy-levels. Electrons don’t like to have the same energy in the same potential system. The most we could get together in the same energy-level was two, provided thet they had opposite spins. This is called Pauli Exclusion Principle. Allowed band Forbidden band Allowed band Forbidden band Allowed band 1 2 4………………N Number of atoms

The difference in energy between each of these smaller levels is so tiny that it is more reasonable to consider each of these sets of smaller energy-levels as being continuous bands of energy, rather than considering the enormous number of discrete individual levels. Each allowed band is seperated from another one by a forbidden band. Electrons can be found in allowed bands but they can not be found in forbidden bands.

.:: CALCULATION Consider 1 cm3 of Silicon. How many atoms does this contain ? Solution: The atomic mass of silicon is 28.1 g which contains Avagadro’s number of atoms. Avagadro’s number N is 6.02 x 1023 atoms/mol . The density of silicon: 2.3 x 103 kg/m3 so 1 cm3 of silicon weighs 2.3 gram and so contains This means that in a piece of silicon just one cubic centimeter in volume , each electron energy-level has split up into 4.93 x 1022 smaller levels !

.:: Semiconductor, Insulators, Conductors ::. Empty band Full band All energy levels are empty ( no electrons) All energy levels are occupied by electrons Both full and empty bands do not partake in electrical conduction.

.:: Semiconductor energy bands at low temperature ::. At low temperatures the valance band is full, and the conduction band is empty. Recall that a full band can not conduct, and neither can an empty band. At low temperatures, s/c’s do not conduct, they behave like insulators. The thermal energy of the electrons sitting at the top of the full band is much lower than that of the Eg at low temperatures. Empty conduction band Electron energy Forbidden energy gap [Eg] Full valance band

Conduction Electron : Assume some kind of energy is provided to the electron (valence electron) sitting at the top of the valance band. This electron gains energy from the applied field and it would like to move into higher energy states. This electron contributes to the conductivity and this electron is called as a conduction electron. At 00K, electron sits at the lowest energy levels. The valance band is the highest filled band at zero kelvin. Empty conduction band Forbidden energy gap [Eg] Full valance band

Semiconductor energy bands at room temperature When enough energy is supplied to the e- sitting at the top of the valance band, e- can make a transition to the bottom of the conduction band. When electron makes such a transition it leaves behind a missing electron state. This missing electron state is called as a hole. Hole behaves as a positive charge carrier. Magnitude of its charge is the same with that of the electron but with an opposite sign. Empty conduction band Forbidden energy gap [Eg] e- + e- + e- + e- + energy Full valance band

Conclusions ::. Holes contribute to current in valance band (VB) as e-’s are able to create current in conduction band (CB). Hole is not a free particle. It can only exist within the crystal. A hole is simply a vacant electron state. A transition results an equal number of e- in CB and holes in VB. This is an important property of intrinsic, or undoped s/c’s. For extrinsic, or doped, semiconductors this is no longer true.

Bipolar (two carrier) conduction After transition, the valance band is now no longer full, it is partly filled and may conduct electric current. The conductivity is due to both electrons and holes, and this device is called a bipolar conductor or bipolar device. empty occupied Valance Band (partly filled band) Electron energy After transition

Electromagnetic radiation ? What kind of excitation mechanism can cause an e- to make a transition from the top of the valance band (VB) to the minimum or bottom of the conduction band (CB) ? Answer : Thermal energy ? Electrical field ? Electromagnetic radiation ? Partly filled CB Eg Partly filled VB Energy band diagram of a s/c at a finite temperature. To have a partly field band configuration in a s/c , one must use one of these excitation mechanisms.

1-Thermal Energy : Excitation rate = constant x exp(-Eg / kT) Thermal energy = k x T = 1.38 x 10-23 J/K x 300 K =25 meV Excitation rate = constant x exp(-Eg / kT) Although the thermal energy at room temperature, RT, is very small, i.e. 25 meV, a few electrons can be promoted to the CB. Electrons can be promoted to the CB by means of thermal energy. This is due to the exponential increase of excitation rate with increasing temperature. Excitation rate is a strong function of temperature.

2- Electric field : For low fields, this mechanism doesn’t promote electrons to the CB in common s/c’s such as Si and GaAs. An electric field of 1018 V/m can provide an energy of the order of 1 eV. This field is enormous. So , the use of the electric field as an excitation mechanism is not useful way to promote electrons in s/c’s.

3- Electromagnetic Radiation : h = 6.62 x 10-34 J-s c = 3 x 108 m/s 1 eV=1.6x10-19 J Near infrared To promote electrons from VB to CB Silicon , the wavelength of the photons must 1.1 μm or less

The converse transition can also happen. An electron in CB recombines with a hole in VB and generate a photon. The energy of the photon will be in the order of Eg. If this happens in a direct band-gap s/c, it forms the basis of LED’s and LASERS. Conduction Band e- photon + Valance Band

Wide band gaps between VB and CB Insulators : The magnitude of the band gap determines the differences between insulators, s/c‘s and metals. The excitation mechanism of thermal is not a useful way to promote an electron to CB even the melting temperature is reached in an insulator. Even very high electric fields is also unable to promote electrons across the band gap in an insulator. CB (completely empty) Eg~several electron volts VB (completely full) Wide band gaps between VB and CB

Metals : CB CB VB VB No gap between valance band and conduction band These two bands looks like as if partly filled bands and it is known that partly filled bands conducts well. This is the reason why metals have high conductivity. CB CB VB VB Touching VB and CB Overlapping VB and CB No gap between valance band and conduction band