I. Dillmann - Annual NUSTAR Meeting – Feb. 29th 2012 Stellar lifetimes of SN isotopes Iris Dillmann, Alexey Evdokimov, Michele Marta Helmholtz Young Investigators.

Slides:



Advertisements
Similar presentations
ASTR112 The Galaxy Lecture 11 Prof. John Hearnshaw 13. The interstellar medium: dust 13.5 Interstellar polarization 14. Galactic cosmic rays 15. The galactic.
Advertisements

Hans Geissel, Pisa05 Precision Experiments with Exotic Nuclei at Relativistic Energies Hans Geissel, GSI and JLU Giessen  Introduction  Precision Measurements:
Cluster of Excellence: Origin and Structure of the Universe Research Area G: How was the Universe enriched in heavy elements? R. Krücken TU München & MLL.
Yoshitaka FUJITA (Osaka Univ.) Hirschegg Workshop /2006, Jan GT (  ) : Important weak response GT transitions of Astrophysics Interest.
Nuclear Physics in Storage Rings Yuri A. Litvinov Institute of Theoretical Physics (ITP), CAS, Beijing Max-Planck-Institut für Kernphysik, Heidelberg.
March 13thXXXXth RENCONTRES DE MORIOND 1 The Alpha Magnetic Spectrometer on the International Space Station Carmen Palomares CIEMAT (Madrid) On behalf.
Potential Positron Sources around Galactic Center Department of Physics National Tsing Hua University G.T. Chen 2007/11/29.
Rare ISotope INvestigation at GSI Status of the relativistic beam campaign Introduction Fast beam physics program Experimental methods Status and perspectives.
Reaction rates in the Laboratory Example I: 14 N(p,  ) 15 O stable target  can be measured directly: slowest reaction in the CNO cycle  Controls duration.
Cosmic Rays Discovery of cosmic rays Local measurements Gamma-ray sky (and radio sky) Origin of cosmic rays.
INRNE BAS NEC'2007, Varna, Bulgaria Positron annihilation versus electron cloud Angel H. Angelov Institute for Nuclear Research and Nuclear Energy.
Future Penning Trap Experiments at GSI / FAIR – The HITRAP and MATS Projects K. Blaum 1,2 and F. Herfurth 1 for the HITRAP and MATS Collaboration 1 GSI.
E.Chiaveri on behalf of the n_TOF Collaboration n_TOF Collaboration/Collaboration Board Lisbon, 13/15 December 2011 Proposal for Experimental Area 2(EAR-2)
Experiments with Stored Exotic Nuclei at Relativistic Energies  The Experimental Facility  Mass measurements  Lifetime measurements  Future Hans Geissel,
N. Saito The RISING stopped beam physics meeting Technical status of RISING at GSI N. Saito - GSI for the RISING collaboration Introduction Detector performance.
The FAIR Chance for Nuclear Astrophysics Elemental Abundances Core-collapse Supernovae The neutrino process The r-process nuclei in -Wind Neutron Stars.
The Active Target for R 3 FAIR Peter Egelhof GSI Darmstadt, Germany ACTAR Workshop Bordeaux, France June 16 – June 18, 2008 FAIR.
Nuclear Astrophysics with the PJ Woods, University of Edinburgh.
March 13thXXXXth RENCONTRES DE MORIOND 1 The Alpha Magnetic Spectrometer on the International Space Station Carmen Palomares CIEMAT (Madrid) On behalf.
Nuclear Structure studies using fast radioactive beams J. Gerl SNP2008 July Ohio University, Athens Ohio USA –The RISING experiment –Relativistic.
 -capture measurements with the Recoil-Separator ERNA Frank Strieder Institut für Physik mit Ionenstrahlen Ruhr-Universität Bochum HRIBF Workshop – Nuclear.
Advanced Burning Building the Heavy Elements. Advanced Burning 2  Advanced burning can be (is) very inhomogeneous  The process is very important to.
I. Introductory remarks and present status II. Laboratory experiments and astrophysics III. Future options scenarios status and challenges new developments.
Lesson 13 Nuclear Astrophysics. Elemental and Isotopic Abundances.
The FAIR* Project *Facility for Antiproton and Ion Research Outline:  FAIR layout  Research programs Peter Senger, GSI USTC Hefei Nov. 21, 2006 and CCNU.
Chapter 5 Interactions of Ionizing Radiation. Ionization The process by which a neutral atom acquires a positive or a negative charge Directly ionizing.
Closing a shell-> Stable atom, high ionization energy.
Massive Star Evolution overview Michael Palmer. Intro - Massive Stars Massive stars M > 8M o Many differences compared to low mass stars, ex: Lifetime.
- Introduction - High-Resolution and High Accuracy Mass Spectrometry - Half-Life Measurements - Summary and Outlook Nuclear Properties far off Stability.
FAIR (Facility for Antiproton and Ion Research) (Darmstadt, Germany) low-energy cave MeV/u fragmentation/fission ~1GeV/u fragment separator 350m.
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Neutron cross sections for reading the abundance history Michael Heil Forschungszentrum Karlsruhe.
Applications of Nuclear Physics
Antimatter in our Galaxy unveiled by INTEGRAL
Cosmic Rays High Energy Astrophysics
E.G.Berezhko, L.T. Ksenofontov Yu.G.Shafer Institute of Cosmophysical Research and Aeronomy Yakutsk, Russia Energy spectra of electrons and positrons,
Max-Planck-Institut für Kernphysik, Heidelberg Zhuang GE RIKEN, Wako, Japan Mass measurements of short-lived nuclides at storage rings in Asia and its.
1 Cross sections of neutron reactions in S-Cl-Ar region in the s-process of nucleosynthesis C. Oprea 1, P. J. Szalanski 2, A. Ioan 1, P. M. Potlog 3 1Frank.
'Helicity of Neutrinos' Shibata lab. TAMORI Midori Dec 12th, 2006 M. Goldhaber et al. Physical Review 109 (1958) Contents 1. Introduction 2.
Diffusive shock acceleration: an introduction
We ask for 4 new shifts (to be combined with 2 shifts left for IS386 from 2005) of radioactive beam of 229Ra in order to search for the alpha decay branch.
Physics opportunities with heavy-ion detectors in the CR
Nuclear Reaction Studies for Explosive Nuclear Astrophysics
Sterile Neutrinos and WDM
Justus-Liebig-University Giessen
the s process: messages from stellar He burning
Star Formation Nucleosynthesis in Stars
Laboratory for Underground Nuclear Astrophysics
12C(p,)13N Nuclear Reaction Rates  12C 13N Nuclear reactions
Event Reconstruction and Data Analysis in R3BRoot Framework
The neutron capture cross section of the s-process branch point 63Ni
Decay spectroscopy with LaBr3(Ce) detectors at RIKEN and GSI
Cosmic-Rays Astrophysics with AMS-02
The astrophysical p-process
[24th Bologna (Italy) 04/09/2008]
Carbon, From Red Giants to White Dwarfs
How precisely do we know the antineutrino source spectrum from a nuclear reactor? Klaus Schreckenbach (TU München) Klaus Schreckenbach.
Study of the resonance states in 27P by using
Study of the resonance states in 27P by using
Rare Isotope Spectroscopic INvestigation at GSI
Isotopic abundances of CR sources
Observations: Cosmic rays
Building the Heavy Elements
Feasibility of geochemical galactic neutrino flux measurement
Institut de Physique Nucléaire Orsay, France
1930: Energy conservation violated in β-decay
by W. R. Binns, M. H. Israel, E. R. Christian, A. C. Cummings, G. A
Rare Isotope Spectroscopic INvestigation at GSI
Intae Yu Sungkyunkwan University (SKKU), Korea KNO 2nd KNU, Nov
Rare Isotope Spectroscopic INvestigation at GSI
(Tokyo university, ICRR)
Presentation transcript:

I. Dillmann - Annual NUSTAR Meeting – Feb. 29th 2012 Stellar lifetimes of SN isotopes Iris Dillmann, Alexey Evdokimov, Michele Marta Helmholtz Young Investigators Group "LISA- Lifetime Spectroscopy for Astrophysics"

I. Dillmann - Annual NUSTAR Meeting – Feb. 29th 2012 Influences on nuclear decay modes? Orbital-EC Continuum-state   -decay  + -decay (Q>1.022 MeV) Decay influenced by temperature (ionization and nuclear excitation) electron and positron density (free electron/positron capture) (ultra-)relativistic cosmic ray particles (fully stripped) Terrestrial conditions  -decay Ground-state decays Continuum-state   -decay Bound-state  -decay (Q+B e ): shorter t 1/2 (Free) positron capture Stellar conditions Fully ionized: stable (no EC) Orbital-EC of H/He-like ions (different t 1/2 ) (Free) electron capture  + -decay  -decay of fully ionized nuclei: No e - screening, longer t 1/2 Decays from excited states (faster) 2

I. Dillmann - Annual NUSTAR Meeting – Feb. 29th 2012 Phases after a SN explosion 3 1.) Supernova explosion: high temperatures (up to 10 GK)  fully ionized material ejected, recombination after 1000 s 2.) Free expansion phase (up to ~1000 y): re-ionization by reverse shock (up to 50 MK) Credit: NASA/CXC/MSFC/M.Weisskopf et al. 3.) Sedov-Taylor phase (~10 4 y): adiabatic expansion 4.) Snow plough phase (~10 9 y): radiative cooling 5.) Merging with ISM 6.) Re-acceleration by another SN shock front?  Cosmic ray particles (fully ionized particles)

I. Dillmann - Annual NUSTAR Meeting – Feb. 29th 2012 Bound-state  -decay 4 M. Jung et al., PRL 69, 2164 (1992). F. Bosch et al., PRL 77, 5190 (1996). T. Ohtsubo et al., PRL 95, (2005). 47 d 33 a 255 s ??? F. Bosch, Y.A. Litvinov, GSI proposal E100 Electron bb Anti-Neutrino A Z z+A Z+1 z+ K L ∞ K L ∞

I. Dillmann - Annual NUSTAR Meeting – Feb. 29th 2012 Hindered EC: 7 Be 5 Hydrogen burning: pp-II chain Lab: t 1/2 (EC)= d Sun: 7 Be 4+ (stable) (p,e + ) (p,  ) (,)(,) EC (p,  ) Core of the Sun: T 6 =15  ~100 g/cm 3 X(H)=Y(He)=0.5   s ( 7 Be)= 141 d Free continuum electrons available:

I. Dillmann - Annual NUSTAR Meeting – Feb. 29th Ti from Cas A (SN~1680) 6 Can 44 Ti be ejected? Yield dep. on stellar mass & mass cut Are 44 Ti-producing SN exceptional ? Yield in M  Lifetime of 44 Ti Age of SNR Meas. flux: F  =(2.5 ±0.5)*10 -5  cm -2 s -1 Age of SN: t≈ 330 y Distance: d=3.4 kpc t 1/2 = 60.4 y (terrestrial) ► Yield( 44 Ti)= (0.8–2.5)*10 -4 M  Measured flux indicates 2-3x more ejected mass than modelled R. Diehl, "The origin of 44 Ti" Workshop (2009) COMPTEL Time- and position-dependence Y. Motizuki et al., Astr. Astroph. 346, 831 (1999) Wrong input parameters (stellar lifetime, reaction rates, …)?

I. Dillmann - Annual NUSTAR Meeting – Feb. 29th 2012 Indirect messenger from SN 7 Photons: direct way, indirect observation of nuclei Credit: ESO 60.4 a SN light curve 60.4 a COMPTEL & INTEGRAL/SPI R. Diehl, MPE Garching  -ray astronomy Observation of ongoing nucleosynthesis 228 keV 0 keV Mg E  = MeV 26 Al COMPTEL detection of 44 Ti from Cas A

I. Dillmann - Annual NUSTAR Meeting – Feb. 29th 2012 Galactic Cosmic Ray Particles 8 CR: indirect way, direct measurement of nuclei Ionized: trajectories along magnetic fields Re-accelerated by SN shock fronts E>300 MeV/u: fully stripped Primary SN isotopes vs. secondary CR (spallation/fragmentation) Electrons, ≈92% p, ≈ 7% He, ≈ 1% heavy nuclei

I. Dillmann - Annual NUSTAR Meeting – Feb. 29th 2012 What can we learn from GCR? 9 CR: indirect way, direct measurement of nuclei  Primary EC SN isotopes ( 59 Ni): Time delay between SN production and acceleration Secondary long-lived isotopes (CR clocks )  Av. density of ISM during propagation: n H = / H at./cm 3  Mean confinement time within Galaxy: stable vs. long-lived (  -decay) CR  esc = /- 1.6 My  "Surviving fraction": depend on confinement time, spallation xs, in-flight decay  GCR spend more time in Gal. halo than in Gal. disk N.E. Yanasak et al., Astrophys. J. 563, 768 (2001)

I. Dillmann - Annual NUSTAR Meeting – Feb. 29th 2012 What can we measure at GSI (FAIR) ? 10 1.Spallation cross sections up to GeV/u (+ detector tests) SPALADIN: 56 Fe + p (down to Z=8), e.g. Villagrasa-Canton et al., PRC 75, (2007) FIRST (Fragmentation of Ions Relevant for Space and Therapy): 12 C 2.Decay spectroscopy of weak decay branches (HISPEC/DESPEC?) Spectroscopy of weak  + /  - branches 3.(Stellar) t 1/2 of highly ionized nuclei in the storage ring(s) (ILIMA) n H = / H at./cm 3  esc = /- 1.6 My N.E. Yanasak et al., Astrophys. J. 563, 768 (2001) Main source of uncertainties : Spallation xs (Stellar) Half-life of 54 Mn

I. Dillmann - Annual NUSTAR Meeting – Feb. 29th 2012 SN/CR isotopes 11 Mixed decay isotopes Pure EC decay isotopes SN isotopes Primary SN isotopes CR clocks Secondary CR spallation products

I. Dillmann - Annual NUSTAR Meeting – Feb. 29th 2012  + ~10 -5 % EC 1720 keV 970 keV 158 keV keV 0+ Mixed EC/  -decay isotopes Stellar conditions: EC hindered, weak  + /  - decay channel determines stellar t 1/2 2nd forb. (unique) transitions (cp. 10 Be, 26 Al): log ft=  t 1/2 =85000 y My 12  - ~10 -5 %  + ~10 -7 % EC 835 keV /2- EC 3/2-  + ~10 −5 %   

I. Dillmann - Annual NUSTAR Meeting – Feb. 29th Mn 13 CR chronometer if partial t 1/2 of  - branch known  + branch measured Assuming same log ft for  - branch (factor 2-3 uncertainty)  - ~10 -5 %  + ~10 -7 % EC 835 keV 

I. Dillmann - Annual NUSTAR Meeting – Feb. 29th Mn:  - branch 14 Direct measurement: 0.47 MBq (1.8*10 13 at. 54 Mn) Discrimination of background e - from internal conversion Compton scattering "shake-off" from excited nucleus Auger electrons contaminants   y Shell model prediction: t 1/2 (  - )~ y Martinez-Pinedo et al., PRL 81, 281 (1998) Kibedi et al., Astrophys. J. 489, 951 (1997)

I. Dillmann - Annual NUSTAR Meeting – Feb. 29th Ni decay 15 ++ EC 1720 keV 970 keV 158 keV keV 0+  Most abundant isotope from SN explosions: early SN lightcurve (positrons) Measure for acceleration time scale if t 1/2 > 10 My Partial t 1/2 (  + ) 2+: ( )*10 8 y 3+: ( )*10 4 y 4+: ( )*10 12 y Quenching of GT, not for forbidden transition If quenched: t 1/2 (  + )= y  No CR chronometer Shell model predictions Lund Fisker et al., EPJA 5, 229 (1999) Measurement (0.1 MBq source, 8*10 10 at.):  + (158 keV) y Zaerpoor et al., PRC 59, 3393 (1999)

I. Dillmann - Annual NUSTAR Meeting – Feb. 29th 2012 Pure EC isotopes 16 X Z+ : stable X (Z-1)+ : t 1/2 (neutral) *2 ("H-like") X (Z-2)+ : t 1/2 (neutral) *9/8 ("He-like") Simple assumption: Adv. Composition Explorer (ACE)/ Cosmic Ray Isotope Spectrometer (CRIS): E= MeV/u, up to Z ≈ months measured (Dec Sept. 1999) Isotopic abundances (%)

I. Dillmann - Annual NUSTAR Meeting – Feb. 29th 2012 EC of H- and He-like atoms 17 Assumption: t 1/2  always longer for orbital-EC of highly charged ions? X Z+ : stable X (Z-1)+ : t 1/2 (neutral) *2("H-like") X (Z-2)+ : t 1/2 (neutral) *9/8("He-like") GSI experiment in storage ring ESR:  + and EC decay of 140 Pr 59+,58+,57+ Y.A. Litvinov et al., PRL 99, (2007) N. Winckler et al., PLB 679, 36 (2009) t 1/2 (He-like)= 3.83 (16) min *9/8 t 1/2 (H-like)= 3.04 (9) min  *9/10 t 1/2 (neutral)= 3.39 (1) min Same observed for 142 Pm

I. Dillmann - Annual NUSTAR Meeting – Feb. 29th 2012 Explanation 18 Y.A. Litvinov et al., PRL 99, (2007) Conservation of total angular momentum of nucleus-lepton system EC decay rates of H- and He-like atoms depend on nuclear spins Z. Patyk et al., PRC 77, (2008) Theoretical description for allowed decays (  I= 0, +/-1, no parity change)

I. Dillmann - Annual NUSTAR Meeting – Feb. 29th 2012 Experimental Storage Ring 19 Single ion spectrometry: Direct measurement of the stellar decay branches Time-resolve Schottky spectrometry + particle detectors Picture: Y. A. Litvinov Momentum acceptance:  p/p≈ 2.5%: EC,  + /  - daughter: within acceptance  Schottky's  + /  - : if outside acceptance  particle detectors

I. Dillmann - Annual NUSTAR Meeting – Feb. 29th 2012 Possible measurements 20 "Easy" cases: Challenging (factor more ions needed): (weak  -branches) 10 7 pps injected, 30min measured  ~1 event/d if partial t 1/2 = y

I. Dillmann - Annual NUSTAR Meeting – Feb. 29th SIS 100/300 HESR SuperFRS NESR CR RESR Isomeric beams, LIfetimes, and MAsses FAIR-CR:  p/p≈ 3.0%; 2 particle detectors (higher efficiency), several Schottky pickups, higher production rate

I. Dillmann - Annual NUSTAR Meeting – Feb. 29th 2012 Summary 22 EC hindered in GCR isotopes  weak  + /  - branches determine "stellar" half-life 54 Mn, 56 Ni: weak branches not well determined, large uncertainty in stellar half-life Isomeric beams, LIfetimes, and MAsses EC of H-/He-like ions: deviation from simple assumptions due to conservation of angular momentum More measurements needed…