1 Influence Lines for Beams Influence Lines for Floor Girders Influence Lines for Trusses Maximum Influence at a Point Due to a Series of Concentrated.

Slides:



Advertisements
Similar presentations
BENDING MOMENTS AND SHEARING FORCES IN BEAMS
Advertisements

7. MOMENT DISTRIBUTION METHOD
CIVL3310 STRUCTURAL ANALYSIS
Structural Mechanics 4 Shear Force, Bending Moment and Deflection of Beams 20 kN RA RB 3.00m 2.00m.
3. INFLUENCE LINES FOR STATICALLY DETERMINATE STRUCTURES
ENGR-1100 Introduction to Engineering Analysis
Chapter 3: ANALYTICAL PROCEDURE
UNIT –III Bending Moment and Shear Force in Beams
Forces in Beams and Cables
CTC / MTC 222 Strength of Materials
1. For a publicity stunt to promote a popular children’s TV show, an entertainment company’s engineers must design a static hoist to suspend Bernard the.
Structure Analysis I. Lecture 8 Internal Loading Developed in Structural Members Shear & Moment diagram Ch.4 in text book.
Professor Joe Greene CSU, CHICO
Beams Shear & Moment Diagrams E. Evans 2/9/06. Beams Members that are slender and support loads applied perpendicular to their longitudinal axis. Span,
Engineering Mechanics: Statics
Beam Analysis Civil Engineering and Architecture
A.U. question paper problems
Bending Shear and Moment Diagram, Graphical method to construct shear
MECHANICS OF MATERIALS 7th Edition
Eng Ship Structures 1 Hull Girder Response Analysis
Beams, Shear Force & Bending Moment Diagrams
T AB The Concurrent System The Free Body Diagram.
Copyright © 2010 Pearson Education South Asia Pte Ltd
Distributed loads Loads are not always point loads Sometimes there are uniformly distributed loads on structures.
 2005 Pearson Education South Asia Pte Ltd TUTORIAL-1 : UNIAXIAL LOAD 1 PROBLEM-1 1 m P A composite A-36 steel bar shown in the figure has 2 segments,
Analysis of Beams and Frames Theory of Structure - I.
Engineering Mechanics: Statics
UNIT - II Shear Force Diagrams and Bending Moment Diagrams Lecture Number -1 Prof. M. J. Naidu Mechanical Engineering Department Smt. Kashibai Navale College.
1 Influence Line Diagram -III Theory of Structures-I.
NOR AZAH BINTI AZIZ KOLEJ MATRIKULASI TEKNIKAL KEDAH
7.3 Relations between Distributed Load, Shear and Moment
WORKSHEET 6 TRUSSES. Q1 When would we use a truss? (a) long spans, loads not too heavy (b) when want to save weight (d) when want light appearance (c)
PROBLEM-1 Using graphical method, draw the shear and bending moment diagrams for the beam shown in the figure. Determine the absolute maximum bending.
Static Analysis Static Analysis, Internal Forces, Stresses: Normal and Shear 1.
Beam Formula If I am given a formula and I am ignorant of its meaning, it cannot teach me anything; but if I already know it, what does the formula teach.
MECHANICS OF MATERIALS Third Edition CHAPTER © 2002 The McGraw-Hill Companies, Inc. All rights reserved. Analysis and Design of Beams for Bending.
A simply supported beam of span 8 m carries two concentrated loads of 32 kN and 48 kN at 3m and 6 m from left support. Calculate the deflection at the.
CE STATICS Dr. Mustafa Y. Al-Mandil Department of Civil Engineering LECTURE EQUILIBRIUM OF RIGHD BODY “ It is necessary and sufficient for.
Shear Force Diagram (SFD): The diagram which shows the variation of shear force along the length of the beam is called Shear Force Diagram (SFD). The diagram.
EM 304 Lecture 1 Syllabus What is “Mechanics of materials”?
60 kN 100 kN 130 kN Q.1 Determine the magnitude, sense, and direction of the resultant of the concurrent force system below
GOVERNMENT ENGINEERING COLLEGE RAJKOT CIVIL ENGINEERING DEPARTMENT.
PRESENTED BY Prof. Hanuamanth Raj Department of Mechanical Engineering, Sahaydri College of Engineering, Adyar Mangalore SHEAR FORCE AND BENDING MOMENT.
Eng Ship Structures 1 Hull Girder Response Analysis
Analysis and Design of Beams for Bending
SFD &BMD (POINT LOAD & UDL) By: Mechanical Mania.
Analysis and Design of Beams for Bending
shear force and bending moment diagram
Statically Determine of Beams and Frames
STATICS (ENGINEERING MECHANICS-I)
Analysis and Design of Beams for Bending
Problem-1 A two member frame is supported by the two pin supports at A and D as shown. The beam AB is subjected to a load of 4 kN at its free end. Draw.
TUTORIAL 2.
Analysis and Design of Beams for Bending
Equilibrium Of a Rigid Body.
Equilibrium Of a Rigid Body.
Equilibrium Of a Rigid Body.
1. For a publicity stunt to promote a popular children’s TV show, an entertainment company’s engineers must design a static hoist to suspend Bernard the.
Forces, Moment, Equilibrium and Trusses
Internal Forces.
Structural Analysis UNIT 4 MOMENT DISTRIBUTION METHOD
Examples.
Revision.
Equilibrium Of a Rigid Body.
Shear Force & Bending Moment Diagrams
TUTORIAL 2.
Structure I Course Code: ARCH 208 Dr. Aeid A. Abdulrazeg
Engineering Mechanics: Statics
Revision.
TUTORIAL 2.
Presentation transcript:

1 Influence Lines for Beams Influence Lines for Floor Girders Influence Lines for Trusses Maximum Influence at a Point Due to a Series of Concentrated Loads Absolute Maximum Shear and Moment INFLUENCE LINES FOR STATICALLY DETERMINATE STRUCTURES

2 Influence Line Unit moving load A B

3 Example 6-1 Construct the influence line for a) reaction at A and B b) shear at point C c) bending moment at point C d) shear before and after support B e) moment at point B of the beam in the figure below. B A C 4 m

4 SOLUTION Reaction at A +  M B  = 0: 1 4 m 8 m12 m AyAy x A C 4 m8 m AyAy ByBy 1 x x AyAy

5 A C 4 m AyAy ByBy 8 m Reaction at B +  M A  = 0: 1 x 4 m8 m12 m ByBy x x ByBy

6 Shear at C A C 4 m AyAy ByBy 1 x  F y = 0: + + VCVC MCMC VCVC MCMC A C x 4 m A C 1 x

xVCVC m 8 m12 m VCVC x A C 4 m AyAy ByBy 1 x

8 Bending moment at C A C 4 m AyAy ByBy 1 x VCVC MCMC VCVC MCMC +  M C  = 0: + A C x 4 m A C 1 x

xMCMC m 8 m12 m MCMC x 2 -2 A C 4 m AyAy ByBy 1 x

10 Or using equilibrium conditions: Reaction at A +  M B  = 0: 1 4 m 8 m12 m AyAy x A C 4 m8 m AyAy ByBy 1 x x AyAy

11 Shear at C A C 4 m AyAy ByBy 1 x  F y = 0: + + VCVC MCMC A C x 4 m VCVC MCMC A C 1 x

m 8 m12 m AyAy x -0.5 VCVC 8 m12 m x 4 m B A C 4 m

13 Bending moment at C A C 4 m AyAy ByBy 1 x +  M C  = 0: VCVC MCMC A C x 4 m VCVC MCMC A C 1 x +  M C  = 0:

m 8 m12 m AyAy x 4 m 8 m12 m MCMC x -2 B A C 4 m

15 Shear before support B A C 4 m AyAy ByBy 1 x 1 8 m12 m AyAy x -0.5 V B - = A y V B - = A y -1 1 AyAy 8 m VB-VB- MBMB x AyAy VB-VB- MBMB V B- x -0.5

16 Shear after support B A C 4 m AyAy ByBy 1 x 1 8 m12 m AyAy x V B+ x 1 V B + = 0 4 m VB+VB+ MBMB 1 V B + = 1 4 m VB+VB+ MBMB

17 Moment at support B A C 4 m AyAy ByBy 1 x 1 8 m12 m AyAy x -4 MBMB x 1 M B = 8A y -(8-x) M B = 8A y 1 AyAy 8 m VB-VB- MBMB x AyAy VB-VB- MBMB

18 P = 1 Reaction Influence Line for Beam C A B P = 1 AyAy ByBy  y = 1 C A B L

19  y = 1 C A B P = 1 AyAy ByBy C A B L

20 L A B a - Pinned Support RARA RARA x 1 b C AB

21 AB AB ab L RARA RARA x Fixed Support

22 Shear C AB P = 1 a b L  y =1  yL  yR A B VCVC VCVC P = 1 AyAy ByBy  y =1

23 L A B a VCVC VCVC VCVC x 1 b L -a L 1 Slope s A = 1 L Slope s B = 1 L Slope at A = Slope at B - Pinned Support b C AB

24 AB ab L A B VBVB VBVB VBVB x 11 - Fixed Support

25 Bending Moment a b L 1 A B MCMC MCMC P = 1 AyAy ByBy h C AB

26 a L A B Hinge MCMC MCMC ba  A = b L B=B= a L  C =  A +  B = 1 MCMC x ab L - Pinned Support b C AB

27 AB ab L A B MCMC MCMC MBMB x 1 -b - Fixed Support

28 General Shear x V BL x VCVC -1/4 3/4 1 x VDVD -2/4 2/4 1 -3/4 x VEVE 1/4 1 A CDEBFGH L L/4

29 x V BL x VGVG 1 x VFVF 1 x V BR 1 A CDEBFGH L L/4

30 General Bending Moment s A = 3/4 s B = 1/4  = s A + s B = 1 s A = 1/2 s B = 1/2  = s A + s B = 1 s A = 1/4 s B = 3/4  = s A + s B = 1 x MCMC 3/16 x MDMD 4/1 6 x MEME 3/1 6 A CDEBFGH L L/4

31 x MBMB 3L/4 1 x MGMG L/4 1 x MFMF 2L/4 1 A CDEBFGH L L/4

32 Example 6-2 Construct the influence line for - the reaction at A, C and E - the shear at D - the moment at D - shear before and after support C - moment at point C A B C D E 2 m 4 m Hinge

33 A C D E 2 m 4 m B RARA x 1 RARA SOLUTION

34 A C D E 2 m 4 m B RCRC RCRC x 1 8/6 4/6

35 A B C D E 2 m 4 m RERE RERE x -2/6 2/6 1

36 A B C D E 2 m 4 m VDVD VDVD VDVD x 1 2/6 1 s E = s C s E = 1/6 s C = 1/6 = -2/6 = 4/6

37 Or using equilibrium conditions: V D = 1 -R E 1 VDVD x 2/6 -2/6 4/6 RERE VDVD MDMD 4 m 1 x V D = -R E RERE VDVD MDMD 4 m RERE x -2/6 1 2/6 A B C D E 2 m 4 m Hinge

38 A B C D E 2 m 4 m MDMD x (2)(4)/6 = 1.33  D =  C +  E = 1  C = 4/6 2 2/6 =  E MDMD MDMD

39 Or using equilibrium conditions: M D = -(4-x)+4R E 1 RERE VDVD MDMD 4 m 1 x M D = 4R E RERE VDVD MDMD 4 m RERE x -2/6 1 2/6 MDMD x -8/6 8/6 A B C D E 2 m 4 m Hinge

40 A B C D E 2 m 4 m V CL x

41 A B C D E 2 m 4 m Or using equilibrium conditions: 1 RARA x 1 V CL = R A - 1 V CL x V CL = R A RARA 1 V CL MBMB RARA MBMB

42 A B C D E 2 m 4 m V CR x

43 A B C D E 2 m 4 m Or using equilibrium conditions: 1 V CR x RERE x -2/6 = /6=0.33 V CR = -R E RERE V CR MCMC V CR = 1 -R E RERE V CR MCMC 1

44 A B C D E 2 m 4 m MCMC MCMC MCMC x 1 -2

45 A B C D E 2 m 4 m MCMC x 1 -2 Or using equilibrium conditions: 1 RERE x -2/6 = /6=0.33 M C = 6R E RERE V CR MCMC 6 m RERE V CR MCMC 1

46 Example 6-3 Construct the influence line for - the reaction at A and C - shear at D, E and F - the moment at D, E and F Hinge AB CD EF 2 m

47 SOLUTION RARA RARA x m A B CD E F

48 2 m AB C D E F RCRC x RCRC

49 2 m AB C D E F VDVD VDVD VDVD x = =

50 AB CD E 2 m F VEVE VEVE VEVE x = =

51 2 m AB CD E F VFVF VFVF VFVF x 1 = =

52 2 m AB CD E F MDMD MDMD MDMD x -2-2  D = 1 1 2

53 2 m AB CD E F  E = 1 MEME MEME MEME x  C = 0.5  B = 0.5 (2)(2)/4 = 1 -2

54 2 m AB CD E F MEME MEME MFMF x  F = 1 -2

55 Example 6-4 Determine the maximum reaction at support B, the maximum shear at point C and the maximum positive moment that can be developed at point C on the beam shown due to - a single concentrate live load of 8000 N - a uniform live load of 3000 N/m - a beam weight (dead load) of 1000 N/m 4 m A B C

56 0.5(12)(1.5) = 9 SOLUTION RBRB x = N = 48 kN (R B ) max + (8000)(1.5)= (1000)(9)+ (3000)(9) 8000 N 1000 N/m 3000 N/m 4 m A B C

57 0.5(4)(-0.5) = (4)(0.5) = 1 0.5(4)(-0.5) = -1 = (1000)(-2+1) 4 m A B C VCVC x N/m (V C ) max + (8000)(-0.5) = N = 11 kN + (3000)(-2) N/m 8000 N

N 3000 N/m 1000 N/m (1/2)(4)(2) = 4 +(1/2)(8)(2) = 8 4 m A B C 3000 N/m (M C ) max positive = (8000)(2) = Nm = 44 kNm + (8-4)(1000)+ (3000)(8) MCMC x 2 -2

59 ABCDEF G H Influence Line for Girder Forces Apply to the Girder (b/L)P1(b/L)P1 (a/L)P1(a/L)P1 P2P2 P1P1 ab P2P2 L A B P 1 D P 2 A BC DE F G H

60 A BC DE F G H Reaction RGRG RHRH RHRH 1

61 A BC DE F G H RGRG RGRG 11 RHRH

62 A BC DE F G H Shear L abbb VCVC VCVC VCVC x 2b/L -(a+b)/L 1

63 A BC DE F G H L V CD V CD x -a/L b/L ab

64 A BC DE F G H Bending Moment L ab ab/L MCMC x 1 1 MCMC MCMC

65 A BC DE F G H L MFMF x MFMF MFMF ab ab/L

66 Example 6-5 Draw the influence for - the Reaction R G and R F - Shear V CD - the moment M C and M H 1.5 m A BC DE H F 3 m G

m A BC DE H F 3 m G RGRG x RGRG

m A BC DE H F 3 m G RFRF x RFRF

m A BC DE H F 3 m G V CD x /9 -4.5/

m A BC DE H F 3 m G MCMC MCMC 1 1 MCMC x (3)(6)/9 =

m A BC DE H F 3 m G MHMH MHMH MHMH x (4.5)(4.5)/9 =

72 Example 6-6 Draw the influence line diagrams of girder for - the reaction at C and G, - shear at E and H, - bending moment at H. A G B 4 m = 24 m C DE FH 2 m

73 A G B 4 m = 24 m C DE FH2 m SOLUTION RCRC RCRC

74 A G B 4 m = 24 m C DE FH2 m RGRG RGRG

75 A G B 4 m = 24 m C DE FH2 m VEVE VEVE VEVE 8/16 = /16 = m

76 A G B 4 m = 24 m C DE FH2 m 6/16 = /16 = VHVH 1 1 VHVH VHVH m 6 m

77 A G B 4 m = 24 m C DE FH2 m MHMH MHMH MHMH (10)(6)/16 = m 6 m

78 Draw the influence for - the Reaction R G and R H - Shear V C and V CD - the moment M C, M D, and M F and determine the maximum for - the Reaction (R G ) max and (R H ) max - Shear (V CD ) max due to - a uniform dead load 2 kN/m - a uniform live load 5 kN/m - a concentrated live load 50 kN Example m 4 m 2 m A BC DE F G H

79 2 m 4 m 2 m A BC DE F G H RGRG /14 6/14 2/14 1/14 RGRG 11 RHRH

80 2 m 4 m 2 m A BC DE F G H RGRG RHRH RHRH 1 12/14 8/14 4/14 6/14

81 2 m 4 m 2 m A BC DE F G H VCVC VCVC VCVC x 8/14 -6/ /14 4/14 -1/14

82 -8/14 6/14 2 m 4 m 2 m A BC DE F G H VFVF VFVF V CD x -1/14 -2/14 -6/14 4/14

83 2 m 4 m 2 m A BC DE F G H (6)(8)/14 = MCMC x (4/8)(3.43) (2/6)(3.43) 1 1 MCMC MCMC

84 2 m 4 m 2 m A BC DE F G H MDMD x (10)(4)/14 = 2.86 (6/10)(2.86) (2/10)(2.86) MDMD MDMD

85 (8)(6)/14= m 4 m 2 m A BC DE F G H MFMF x MFMF MFMF

86 [0.5×4 (2/14)] + [(0.5)(2/14 + 1)(12) = RGRG 1 10/14 6/14 2/14 1/14 Maximum Reaction 2 kN/m 5 kN/m 50 kN (R G ) max = (2)(7.143) + (5)(7.143)+ (50)(1) = 100 kN 2 m 4 m 2 m A BC DE F G H

87 2 m 4 m 2 m A BC DE F G H (0.5)(16)(12/14) = RHRH 12/14 8/14 4/14 6/14 Maximum Reaction 2 kN/m 5 kN/m 50 kN (R H ) max = (2)(6.857)+ (5)(6.857)+ (50)(12/14) = kN

88 2 m 4 m 2 m A BC DE F G H + (0.5)(5.6)(4/14) = [0.5(4)(2/14) + 0.5(2/14) + (6/14)(4) + 0.5(2.4)(6/14)] = m V CD -1/14 -2/14 -6/14 4/14 Maximum Shear 2 kN/m 5 kN/m 50 kN (V CD ) max =(2)( )(5)(-1.943)+ (50)(-6/14) = kN

89 Influence Line for Trusses RARA x 1 RERE x 1 (3/4) (2/4) (1/4) (2/4) (3/4) (1/4) A BC E G H D F x m h

90 A BC E G H D F x m h 1 kN Consider the right hand F CB RERE F GB F GH F BC x (2x/h)(1/4) +  M G  = 0: RERE x 1 (2/4) (3/4) (1/4)

91 A BC E G H D F x m h 1 kN Consider the left hand F HG F BC RARA F BG +  M G  = 0: F BC x (2x/h)(1/4) RARA x 1 (3/4) (2/4) (1/4) (2x/h)(1/4) (2x/h)(2/4)

92 Determine the maximum force developed in member BC, BG,and CG of the truss due to the wheel loads of the car. Assume the loads are applied directly to the truss. the wheel loads of the car 4 kN1.5 kN 2 m Example 6-8 A BC E G H 4 m D F 3 m

93 RARA x RERE x SOLUTION A BC E G H 4 m D F 3 m

94 A BC E G H 4 m D F 3 m Influence Line for F BC 1 kN Consider the right hand F BC = (6/4) R E = 1.5 R E F CB RERE F GB F GH RERE x F BC x 1.5(0.25) =  M G  = 0:

95 A BC E G H 4 m D F 3 m (0.5) = kN Consider the left hand F HG F BC RARA F BG RARA x F BC = 1.5 R A F BC x  M G  = 0:

96 A BC E G H 4 m D F 3 m RERE x Influence Line for F BG 1 kN Consider the right hand  F y = 0 ; F BG cos  = R E F GH F GB F CB RERE  F BG = 1.25 R E F BG (4/5) = R E 1.25(0.25) = F BG x

97 A BC E G H 4 m D F 3 m 1 kN Consider the left hand  F y = 0 ; F BG cos  + R A = 0 RARA x F HG F BC RARA F BG  F BG x F BG = R A F BG (4/5) = -R A (0.5) =

98 A BC E G H 4 m D F 3 m F CG x Influence Line for F CG 1 kN 0 0

99 A BC E G H 4 m D F 3 m F CG x 1 kN 1 1

100 A BC E G H 4 m D F 3 m (F BC ) max by Loads (F BC ) max = (4)(0.75)+ (1.5)(0.5) = 3.75 kN # F BC x kN1.5 kN 2 m 0.5

101 A BC E G H 4 m D F 3 m (F BG ) max by Loads (F BG ) max = (4)(-0.625)+ (1.5)(-0.417) = kN # F BG x kN1.5 kN 2 m

102 A BC E G H 4 m D F 3 m (F CG ) max by Loads F CG x (F CG ) max = (4)(1)+ (1.5)(0.333) = 4.50 kN # 4 kN1.5 kN 2 m

103 Maximum Influence at a Point Due to a Series of Concentrated Loads F2F2 x1x1 x2x2 F1F1 F3F3 x MCMC ab/L VCVC x (b/L) (-a/L) A B C ab

104 A B C ab x MCMC ab/L F2F2 x1x1 x2x2 F1F1 F3F3 VCVC x (b/L) (-a/L)

105 A B C ab VCVC x (b/L) (-a/L) x MCMC ab/L F2F2 x1x1 x2x2 F1F1 F3F3

106 A B C ab VCVC x (b/L) (-a/L) x MCMC ab/L F2F2 x1x1 x2x2 F1F1 F3F3

107 VCVC x kN 1 m3 m 1 kN 6 kN Shear A B C 2 m6 m

108 Case 1 VCVC x kN 1 m3 m 1 kN 6 kN (V C ) 1 = 1(0.75) + 4(0.625) + 6(0.25) = 4.75 kN A B C 2 m6 m

109 Case 2 VCVC x kN 1 m3 m 1 kN 6 kN (V C ) 2 = 1(-0.125) + 4(0.75) + 6(0.375) = kN A B C 2 m6 m

110 Case 3 VCVC x kN 1 m3 m 1 kN 6 kN (V C ) 3 = 6(0.75) = 4.5 kN (V C ) max = (V C ) 2 = kN A B C 2 m6 m

111 The critical position of the loads can be determined in a more direct manner by finding the change in shear,  V, which occurs when the load are moved from Case 1 to Case 2, then from Case 2 to Case 3, and so on.If the slope of the influence line is s, then (y 2 - y 1 ) = s(x 2 - x 1 ), and therefore  V = Ps(x 2 - x 1 ) Sloping Line (6-1) If the load moves past a point where there is a discontinuity or “jump” in the influence line, as point C, then the change in shear is simply  V = P(y 2 - y 1 ) Jump (6-2)

112 A B C 2 m6 m 4 kN 1 m3 m 1 kN 6 kN VCVC x  V 1-2 = 1( ) + 1(1/8)(1) + 4(1/8)(1) + 6(1/8)(1) = kN (V C ) 2 = (V C ) 1 +  V 1-2 = = kN s = 1/8

113 4 kN 1 m3 m 1 kN 6 kN VCVC x  V 2-3 = 1(1/8)(1) + 4( ) + 4(1/8)(2) + 6(1/8)(3) = kN (V C ) 3 = (V C ) 2 +  V 2-3 = = 4.5 kN s = 1/8 A B C 2 m6 m

114 4 kN 1 m3 m 1 kN 6 kN Moment MCMC x (2)(6)/8 = 1.5 A B C 2 m6 m

115 Case 1 MCMC x (M C ) 1 = 1(1.5) + 4(1.25) + 6(0.5) = 9.5 kNm 4 kN 1 m3 m 1 kN 6 kN A B C 2 m6 m

116 Case 2 MCMC x 1.5 (M C ) 2 = 1(0.75) + 4(1.5) + 6(0.75) = kNm kN 1 m3 m 1 kN 6 kN A B C 2 m6 m

117 Case 3 MCMC x 1.5 (M C ) 3 = 6(1.5) = 9 kNm (M C ) max = (M C ) 2 = kNm 4 kN 1 m3 m 1 kN 6 kN A B C 2 m6 m

118 We can also use the foregoing methods to determine the critical position of a series of concentrated forces so that they create the largest internal moment at a specific point in a structure. Of course, it is first necessary to draw the influence line for the moment at the point and determine the slopes s of its line segments. For a horizontal movement (x 2 - x 1 ) of a concentrated force P, the change in moment,  M, is equivalent to the magnitude of the force times the change in the influence-line ordinate under the load, that is  M = Ps(x 2 - x 1 ) Sloping Line (6-3)

119 = 1.75 kNm = kNm MCMC x kN 1 m3 m 1 kN 6 kN A B C 2 m6 m

120 MCMC x 1.5 = kNm = 9 kNm 4 kN 1 m3 m 1 kN 6 kN A B C 2 m6 m

121 Example 6-9 Determine the maximum shear created at point B in the beam shown in the figure below due to the wheel loads of the moving truck. 4 kN 9 kN 15 kN10 kN 1 m2 m A C B 4 m

122 A C B 4 m SOLUTION VBVB x 4 kN 9 kN 15 kN10 kN 1 m2 m V BR = 4(0.5) + 9(0.375) + 15(0.125) = 7.25 kN V BL = 4(-0.5) + 9(0.375) + 15(0.125) = 3.25 kN Case 1

VBVB x 4 kN 9 kN 15 kN10 kN 1 m2 m V BR = 4(-0.375) + 9(0.5) + 15(0.25) + 10(0) = 6.75 kN V BL = 4(-0.375) + 9(-0.5) + 15(0.25) + 10(0) = kN Case 2 A C B 4 m

VBVB x 4 kN 9 kN 15 kN10 kN 1 m2 m V BR = 4(-0.125) + 9(-0.25) + 15(0.5) + 10(0.25) = 7.25 kN V BL = 4(-0.125) + 9(-0.25) + 15(-0.5) + 10(0.25) = kN Case 3 A C B 4 m

VBVB x 4 kN 9 kN 15 kN10 kN 1 m2 m V BR = 9(0) + 15(-0.25) + 10(0.5) = 1.25 kN V BL = 9(0) + 15(-0.25) + 10(-0.5) = kN The maximum shear created at point B is kN Case 4 A C B 4 m

126 Case 1V BR = 7.25 kN Case 2V BR = 6.75 kN Case 3V BR = 7.25 kN Case 4V BR = 1.25 kN 4 kN 9 kN 15 kN10 kN 1 m2 m VBVB x Summary 1-m Movement of 4 kN,  VB = = kN 2-m Movement of 9 kN,  VB = = kN 2-m Movement of 15 kN,  VB = = - 6 kN A C B 4 m

127 Or using the sloping line VBVB x 4 kN 9 kN 15 kN10 kN 1 m2 m A C B 4 m

128 4 kN 9 kN 15 kN 10 kN 1 m2 m VBVB x A C B 4 m 4 kN9 kN 15 kN 10 kN 1 m2 m = +0.5 kN 2-m Movement of 9 kN = -6 kN 2-m Movement of 15 kN = -0.5 kN 1-m Movement of 4 kN The correct position of the loads. A C B 4 m 4 kN 9 kN 15 kN 10 kN 1 m2 m 4 kN 9 kN 15 kN 10 kN 1 m2 m

VBVB x V BR = 9(0) + 15(-0.25) + 10(0.5) = 1.25 kN V BL = 9(0) + 15(-0.25) + 10(-0.5) = kN The maximum shear created at point B is kN (-0.25) 4 kN 9 kN 15 kN 10 kN 1 m2 m A C B 4 m

130 Example 6-10 Determine the maximum positive moment and negative moment created at point B in the beam shown in the figure below due to the wheel loads of the crane. AC B 2 m 3m3m 3 kN 8 kN 4 kN 2 m3 m

131 x MBMB 2(3)/5 = ACB 2 m 3m3m 3 kN 8 kN 4 kN 2 m3 m SOLUTION M B = 3(1.2) + 8(0) = 3.6 kNm Positive moment CASE I

132 ACB 2 m 3m3m 3 kN 8 kN 4 kN 2 m3 m x MBMB M B = 8(1.2) + 3(0.4) = 10.8 kNm 0.4 CASE II

133 ACB 2 m 3m3m 3 kN 8 kN 4 kN 2 m3 m x MBMB M B = 4(1.2) + 8(0) + 3(-0.8) = 2.4 kNm The maximum positive moment created at point B is 10.8 kNm CASE III

134 ACB 2 m 3m3m 3 kN 8 kN 4 kN 2 m3 m x MBMB M B = 8(-0.8) + 4(0.4) = -4.8 kNm Negative moment 0.4 CASE I

135 3 kN 8 kN 4 kN 2 m3 m x MBMB M B = 4(-0.8) = -3.2 kNm ACB 2 m 3m3m The maximum negative moment created at point B is 4.8 kNm CASE II

136 Absolute Maximum Shear and Moment L CL L/2 FRFR x F1F1 F2F2 F3F3 d1d1 d2d2 2 AB AyAy ByBy

137 A (L/2 - x) F1F1 d1d1 V2V2 M2M2 For maximum M 2 we require 2

138 L AB CL L/2 F1F1 F2F2 F3F3 x1x1 x2x2 FRFR

139 FRFR F1F1 F2F2 F3F3 x1x1 x2x2 b b FRFR F1F1 F2F2 F3F3 x1x1 x2x2 b b a b M x L AB

140 FRFR F1F1 F2F2 F3F3 x1x1 x2x2 a a FRFR F1F1 F2F2 F3F3 x1x1 x2x2 a a a b M x The absolute maximum moment is comparison by M S1 and M S2. L AB

kg 400 kg 8 m Example 6-11 Determine the absolute maximum moment on the simply supported beam cased by the wheel loads. 30 m A B

142 CL 15 m 1200 kg 400 kg 8 m 1600 kg  kg = 0 : A B

143 CL M S =(1200)(7.47) + (400)(3.74) = kgm 14 m 16 m M 1200 x (14)(16)/30 =  M B  = 0: Global: A y = kg 1600 kg 1200 kg 400 kg 6 m 2 m a a 1 m 1 A 14 m 1 A y = kg V1V1 M1M1 +  M 1  = 0: M 1 = kgm Or using equilibrium conditions: A B

144 b b 3 m CL M S =(1200)(4)+ (400)(7.2)= 7680 kgm By comparison, M max = kgm M 400 (18)(12)/30 = 7.2 x 4 18 m 12 m b b 3 m 1600 kg 1200 kg 400 kg 6 m 2 m 1600 kg 1200 kg 400 kg 6 m 2 m A B

T8.2T 4.2 m 1.2 m Example 6-12 Determine the absolute maximum moment on the simply supported beam cased by the wheel loads. 20 m A B

T8.2T 4.2 m 1.2 m  4.6 T = 0 : F R =21 T 20 m A B

147 A B 4.6 T8.2T F R =21 T 4.2 m 1.2 m m 10 m CL M 4.6T x a = m b = m M S =(4.6)(4.82)+ (8.2)(3.12) = Tm + (8.2)(2.63)

T8.2T F R =21 T 4.2 m 1.2 m m CL 10 m M 8.2T x a = m b = m M S =(4.6)(2.95)+ (8.2)(5) = Tm + (8.2)(4.39) By comparison, M max = Tm +  M B  = 0: Global: A y = T Or using equilibrium conditions: 2 +  M 2  = 0: M 2 = Tm A m 2 A y = T V2V2 M2M2 4.6 T 4.2 m A B

149 Example 6-13 Determine the absolute maximum moment on the simply supported beam cased by the wheel loads. 4 kN 9 kN 15 kN10 kN 1 m2 m A B 4 m

150 SOLUTION  4 kN = 0 : 4 kN 9 kN 15 kN10 kN 1 m2 m F R =38 kN 1.74 m 0.26 m A B 4 m

151 a = 3.13 mb = 4.87 m x M 9 kN (3.13)(4.87)/8 = M S = 4(1.30) + 9(1.91) + 15(1.13) + 10(0.34) = kNm 4 kN 9 kN 15 kN10 kN 1 m2 m F R =38 kN 0.87 A B 4 m

152 FRFR 0.13 m 4 kN 9 kN 15 kN10 kN 1 m2 m 0.13 m a = 4.13 mb = 3.87 m x M 15 kN (4.13)(3.87)/8 = M S = 4(0.55) + 9(1.03) + 15(2.0) + 10(0.97) = kNm By comparison, M max = kNm 3 +  M A  = 0: Global: B y = kN Or using equilibrium conditions: B 2 m 15 kN 10 kN kN 3.87 m V3V3 M3M3 +  M 3  = 0: -M 3 -10(2) (3.87) = 0 M 3 = kNm A B 4 m