Fluka Simulations: Electron spectrometer window for AWAKE Jose A. Briz and V. Vlachoudis.

Slides:



Advertisements
Similar presentations
2. June 1 Verification of Monte Carlo Transport Codes FLUKA, MARS and SHIELD-A Vera Chetvertkova, E. Mustafin, I.Strasik (GSI,
Advertisements

Stefan Roesler SC-RP/CERN on behalf of the CERN-SLAC RP Collaboration
Experimental studies of low energy proton irradiation of thin vacuum deposited Aluminum layers T. Renger, M. Sznajder, U.R.M.E. Geppert Chart.
EAR2 simulation update Collaboration board meeting Christina Weiss & Vasilis Vlachoudis.
ILC positron source simulation update Wanming Liu, Wei Gai ANL 03/20/2011.
Wire scanners MDW chicane energy collimator 3 MPS collimators in this region end of linac Damage Simulation in MPS Collimators L. Keller Apr. 9, 2006.
Radiopharmaceutical Production Target Foil Characteristics STOP.
Collimator Damage Adriana Bungau The University of Manchester Cockcroft Institute “All Hands Meeting”, January 2006.
Position [ mm ] Wire Current [ uA ] Results For the 1 mm solid wires, tungsten with the highest melting.
Pion yield studies for proton drive beams of 2-8 GeV kinetic energy for stopped muon and low-energy muon decay experiments Sergei Striganov Fermilab Workshop.
Awake CNGS Window and Shutter Szymon Sroka, Antonio Perillo-Marcone — EN/STI/TCD Thermo-Mechanical Calculations.
Simulation on ILC undulator based source with liquid lead target Wanming Liu ANL.
Introduction Simulation Results Conclusion Hybrid Source Studies Olivier Dadoun A. Variola, F. Poirier, I. Chaikovska,
R.Chehab/Posipol2008/Hiroshima, june POSITRON SOURCES USING CHANNELING FOR ILC & CLIC R.Chehab, X.Artru, M.Chevallier, IPNL/IN2P3/CNRS, Universite.
Study of a new high power spallation target concept
Design of the Photon Collimators for the ILC Positron Helical Undulator Adriana Bungau The University of Manchester Positron Source Meeting, July 2008.
Beijing, Feb 3 rd, 2007 LEPOL 1 Low Energy Positron Polarimetry for the ILC Sabine Riemann (DESY) On behalf of the LEPOL Collaboration.
ELI-NP: the way ahead, March Anna Ferrari An overview of the shielding problems around high energy laser-accelerated beams Anna Ferrari Institute.
Estimation of temperature increase in the dump through Monte – Carlo simulations and rough calculations N. Charitonidis (EN/MEF)
Synchrotron radiation at eRHIC Yichao Jing, Oleg Chubar, Vladimir N. Litvinenko.
HPS Beamline: Background Rates, Sensitivity to Field Uncertainties M. Ungaro1HPS Collaboration Meeting, JLAB, May Concrete Wall thickness Study.
BNL E951 BEAM WINDOW EXPERIENCE Nicholas Simos, PhD, PE Neutrino Working Group Brookhaven National Laboratory.
TCDIM François-Xavier Nuiry September 16 th 2015.
PSB dump: proposal of a new design EN – STI technical meeting on Booster dumps Friday 11 May 2012 BE Auditorium Prevessin Alba SARRIÓ MARTÍNEZ.
XFEL-INJ1/2 DUMPS Remarks / Requirements, Injector Beam Dynamic Review Meeting, DESY, Mon. 23. October 2006 ‹#› XFEL - INJ 1/2.
Calculation of Beam loss on foil septa C. Pai Brookhaven National Laboratory Collider-Accelerator Department
PSB dump replacement 17 th November 2011 LIU-PSB meeting Alba Sarrió.
Material and thickness for pi0 Y.Sudo Univ. of Tsukuba 2008/07/18.
Demonstration of EGS5 (KEK) Y. Namito, Y. Kirihara, M. Hagiwara, H. Iwase Last modified on Japan-Korea Joint Summer School on Radiation Science.
UCLA Positron Production Experiments at SABER Presented by Devon Johnson 3/15/06.
FLUKA Meeting Milan Jul 2010 Work in the frame of the LHC Phase II Upgrade Previous work was dedicated to the study of the.
1 Electra Foil Heating Analysis D. V. Rose, a F. Hegeler, b A. E. Robson, c and J. D. Sethian c High Average Power Laser Meeting PPPL, Princeton, NJ October.
G.Kurevlev - Daresbury meeting Collimators Material Damage Study Previous results In our group - Adriana Bungau’s thesis - heat deposition on.
Russian Research Center” Kurchatov Institute” Shock wave propagation near 450 GeV and 7 TeV proton beams in LHC collimator materials Alexander Ryazanov.
Bubble Chamber Radiator Thermal Analysis 5.0 MeV, 9.5 MeV Beam Energy Fredrik Fors Mechanical Engineering 8/20/2015.
Technology Department 1 TCDS material selection and qualification W. Weterings
AWAKE: D2E for Alexey beam properties Silvia Cipiccia, Eduard Feldbaumer, Helmut Vincke DGS/RP.
Future Circular Collider Study Kickoff Meeting CERN ERL TEST FACILITY STAGES AND OPTICS 12–15 February 2014, University of Geneva Alessandra Valloni.
A. Bertarelli – A. DallocchioWorkshop on Materials for Collimators and Beam absorbers, 4 th Sept 2007 LHC Collimators (Phase II): What is an ideal material.
Simulation of heat load at JHF decay pipe and beam dump KEK Yoshinari Hayato.
DRAFT Simulation of Errant Beams in the BDS How many bunches will damage beamline components or quench SC coils? Analysis Steps 1.Use TRANSPORT with BDS.
Recent Energy Deposition Simulations TCSM-A6L7 L. Keller LARP Video Mtg. 02 Oct
Measurement of 400 MeV Proton Beam Intensity and Transmission Through Collimator of HPRF Cavity at Fermilab MuCool Test Area M. R. Jana 1, M. Chung 1,
Validation of GEANT4 versus EGSnrc Yann PERROT LPC, CNRS/IN2P3
N_TOF EAR-1 Simulations The “γ-flash” A. Tsinganis (CERN/NTUA), C. Guerrero (CERN), V. Vlachoudis (CERN) n_TOF Annual Collaboration Meeting Lisbon, December.
V. Raginel, D. Kleiven, D. Wollmann CERN TE-MPE 2HiRadMat Technical Board - 30 March 2016.
Chiara Di Paolo EN-STI-TCD Material Choice for the Vacuum Window at the Exit of BTM.
Heating and radiological
Positron production rate vs incident electron beam energy for a tungsten target
Induced-activity experiment:
Preliminary result of FCC positron source simulation Pavel MARTYSHKIN
Positron capture section studies for CLIC Hybrid source - baseline
Measurements and FLUKA Simulations of Bismuth and Aluminum Activation at the CERN Shielding Benchmark Facility(CSBF) E. Iliopoulou, R. Froeschl, M. Brugger,
Interaction of 50 MeV - 50 TeV proton with solid copper target at CERN hadron accelerator complex
Tungsten Powder Test at HiRadMat Scientific Motivation
Alexander Mikhailichenko July 22, 2008
of secondary light ion beams
of secondary light ion beams
Update on GEp GEM Background Rates
Target R&D for JHF neutrino

Damage Levels V. Kain AB/Co
EUROnu Beam Window Studies Stress and Cooling Analysis
CEPC Injector positron source
Fragmentation cross sections of Fe26+, Si14+ and C6+ ions of 0
US LHC Accelerator Research Program
Direct Hits on Titanium Alloy Spoilers
CEPC Injector positron source
SPL-SB and NF Beam Window Studies Stress Analysis
Beam Screens Cooling Update (1st Oktober 2014)
Presentation transcript:

Fluka Simulations: Electron spectrometer window for AWAKE Jose A. Briz and V. Vlachoudis

Beam and target properties Beam properties Particles: electrons Two types of beams: 1.-Unaccelerated beams: 1.25x10 9 particles per bunch at ~16 MeV 2.-Accelerated beams: 30% x 1.25x10 9 particles per bunch at ~1.3 GeV Window properties 1-m-wide x 6.5-cm-high window Different configurations to test: -2 mm thick Aluminum 5083 H111 or Aluminum 6082T6 -1 mm thick Stainless Steel 304L -1 mm thick Ti 6 Al 4 V

Beam impact location WINDOW WINDOW size: 1 m wide (-50,+50) 6.5 cm high (-3.25,+3.25) Window properties 3 configurations to test: -2 mm thick Aluminum 5083 H111 or Aluminum 6082T6 -1 mm thick Stainless Steel 304L -1 mm thick Ti 6 Al 4 V

Results on energy deposited

Unaccelerated beam for Al5083 Maximum energy density: 60 mJ/cm 3 /bunch

Accelerated beam for Al5083 Maximum energy density: 0.4 mJ/cm 3 /bunch

Unaccelerated beam for Titanium Maximum energy density: 95 mJ/cm 3 /bunch

Accelerated beam for Titanium Maximum energy density: 0.65 mJ/cm 3 /bunch

Unaccelerated beam for SS Maximum energy density: 180 mJ/cm 3 /bunch

Accelerated beam for SS Maximum energy density: 0.65 mJ/cm 3 /bunch

Maximum energy densities - Comparative Most critical beam: Unaccelerated Unacc: mJ/cm 3 /bunch Accel.: mJ/cm 3 /bunch Highest energy deposited in Stainless Steel AcceleratedUnaccelerated SS Al6082T6 Ti Al5083

Temperature increases Material Max. Edep (mJ/cm 3 ) Max. ΔT (ºC) Melting point ( ºC ) Aluminum 5083 or 6082T Stainless Steel Ti 6 Al 4 V Unaccelerated beam Almost negligible temperature increase per pulse

Integrated energy deposition MaterialBeam type Average Incident Energy (MeV) Average deposited energy per primary (MeV) Aluminum 5083 or 6082T6 Unaccel Accel Stainless Steel Unaccel Accel Ti 6 Al 4 V Unaccel Accel

Conclusions Almost negligible temperature increases per pulse ( ΔT≤0.05 ºC) Highest energy deposition in Stainless Steel Average energy deposition per primary ~1 MeV ( MeV)