Date of download: 9/17/2016 Copyright © 2016 SPIE. All rights reserved. A schematic of a tunable external cavity diode laser in a Littman-Metcalf configuration.

Slides:



Advertisements
Similar presentations
LIGO-G09xxxxx-v1 Form F v1 Development of a Low Noise External Cavity Diode Laser in the Littrow Configuration Chloe Ling LIGO SURF 2013 Mentors:
Advertisements

Date of download: 5/27/2016 Copyright © 2016 SPIE. All rights reserved. Schematic diagram of the micrograting accelerometer. Figure Legend: From: Laser.
Date of download: 5/28/2016 Copyright © 2016 SPIE. All rights reserved. (a) Simulated hologram of two back-to-back objects, a triangular one as in Figs.
Date of download: 5/28/2016 Copyright © 2016 SPIE. All rights reserved. Optical pulse shaper using grating diffraction and a 4f-setup. G1 and G2 are diffraction.
Date of download: 5/30/2016 Copyright © 2016 SPIE. All rights reserved. The physical network topology. Figure Legend: From: Holding time aware differentiated.
Date of download: 5/30/2016 Copyright © 2016 SPIE. All rights reserved. Experimental setup. Figure Legend: From: Robust technique for spectroscopic plasma.
Date of download: 5/31/2016 Copyright © ASME. All rights reserved. From: Aerodynamic Performance of a Small Horizontal Axis Wind Turbine J. Sol. Energy.
Date of download: 6/1/2016 Copyright © 2016 SPIE. All rights reserved. (a) Vision of the Brillouin lidar operated from a helicopter. The center ray represents.
Date of download: 6/1/2016 Copyright © 2016 SPIE. All rights reserved. Schematic view of the pulsed PA spectrometer. Figure Legend: From: Investigation.
Date of download: 6/2/2016 Copyright © 2016 SPIE. All rights reserved. Dye ring laser control, spectroscopic, and locking feedback system showing overlapping,
Date of download: 6/3/2016 Copyright © 2016 SPIE. All rights reserved. Scheme of the two-wavelength CO2 laser setup. Figure Legend: From: Two-wavelength.
Date of download: 6/3/2016 Copyright © 2016 SPIE. All rights reserved. Notch depth is tuned by adjusting PC4. Figure Legend: From: Reconfigurable microwave.
Date of download: 6/3/2016 Copyright © 2016 SPIE. All rights reserved. Principle of WDM-RoF system with optical virtual private network for inter-BSs and.
Date of download: 6/3/2016 Copyright © 2016 SPIE. All rights reserved. Propagation of optical rays through a volume Bragg grating in transmitting (dotted.
Date of download: 6/6/2016 Copyright © 2016 SPIE. All rights reserved. The block diagram of the CMOS readout circuit structure. Figure Legend: From: Design.
Date of download: 6/17/2016 Copyright © 2016 SPIE. All rights reserved. Standard pump-probe saturation spectroscopy with electronic feedback to the laser.
Date of download: 6/21/2016 Copyright © 2016 SPIE. All rights reserved. Deviation angles of a single prism: α = 0.2 rad, n = 1.5. Figure Legend: From:
Date of download: 6/21/2016 Copyright © 2016 SPIE. All rights reserved. The realization of “grid translation method.” The original grid is 4×4 and the.
Date of download: 6/22/2016 Copyright © 2016 SPIE. All rights reserved. Schematic diagram of multiple-SF radiographic imaging system. Figure Legend: From:
Date of download: 6/22/2016 Copyright © 2016 SPIE. All rights reserved. Basic principle and working condition of all-optical XNOR and XOR gate using SMFP-LD.
Date of download: 6/22/2016 Copyright © 2016 SPIE. All rights reserved. Schematic of the experimental setup. Figure Legend: From: Modeling of a diode-pumped.
Date of download: 6/23/2016 Copyright © 2016 SPIE. All rights reserved. The concept of DECIGO. Figure Legend: From: Comparison of three semiconductor laser.
Date of download: 6/23/2016 Copyright © 2016 SPIE. All rights reserved. Experimental pattern of interference of vortex laser beam (with different optical.
Date of download: 6/23/2016 Copyright © 2016 SPIE. All rights reserved. The single-fiber reflectance spectroscopy system consists of a tungsten-halogen.
Date of download: 6/23/2016 Copyright © 2016 SPIE. All rights reserved. Schematic of MIM-slit plasmonic waveguide. Figure Legend: From: Transmission characteristics.
Date of download: 6/23/2016 Copyright © 2016 SPIE. All rights reserved. The synthesis procedure of compound 3 (isatin Schiff base). Figure Legend: From:
Date of download: 6/23/2016 Copyright © 2016 SPIE. All rights reserved. Experimental setup: LD, laser diode; CCD, charge-coupled device; PC, personal computer;
Date of download: 6/24/2016 Copyright © 2016 SPIE. All rights reserved. Bragg mirror with PSCLC and quarter-wave plate. Figure Legend: From: Asymmetric.
Date of download: 6/24/2016 Copyright © 2016 SPIE. All rights reserved. FSI setup. While the laser sweeps the frequency, the interferometer detector acquires.
Date of download: 6/24/2016 Copyright © 2016 SPIE. All rights reserved. Anatomy of the hysteresis loop. Figure Legend: From: Hysteresis compensation of.
Date of download: 6/25/2016 Copyright © 2016 SPIE. All rights reserved. Temporal profiles of a laser pulse at 1064, 532, and 355nm measured with a 1-ns.
Date of download: 6/25/2016 Copyright © 2016 SPIE. All rights reserved. Photograph (top) and structure (bottom) of the transmitter module. Figure Legend:
Date of download: 6/27/2016 Copyright © 2016 SPIE. All rights reserved. Experimental setup for 3-D vision of the foot sole. Figure Legend: From: Computer.
Date of download: 6/27/2016 Copyright © ASME. All rights reserved. From: Nanoparticle-Assisted Heating Utilizing a Low-Cost White Light Source J. Nanotechnol.
Date of download: 6/30/2016 Copyright © 2016 SPIE. All rights reserved. Trans-cis conformational change of the azo-dyes under light irradiation. (a) Equivalent.
Date of download: 7/2/2016 Copyright © 2016 SPIE. All rights reserved. The schematic diagram of the fiber-optic temperature sensor based on an optoelectronic.
Date of download: 7/2/2016 Copyright © 2016 SPIE. All rights reserved. BWS of PCF-BGs-liquids as temperature changes from −15°C to 65°C. Figure Legend:
Date of download: 7/2/2016 Copyright © 2016 SPIE. All rights reserved. Structure of the EFPI sensor head. Figure Legend: From: Fiber temperature sensor.
Date of download: 7/2/2016 Copyright © 2016 SPIE. All rights reserved. Applying Eq. (1) and a thermal analysis for relating junction temperature (Tj) to.
Date of download: 7/2/2016 Copyright © 2016 SPIE. All rights reserved. The schematic of experimental setup used for generation of collimated hollow beam.
Date of download: 7/3/2016 Copyright © 2016 SPIE. All rights reserved. Experimental setup. Figure Legend: From: Improved speckle method for measuring in-plane.
Date of download: 7/5/2016 Copyright © 2016 SPIE. All rights reserved. Basic principle of the proposed circuit. The lower portion of the figure contains.
Date of download: 7/6/2016 Copyright © 2016 SPIE. All rights reserved. (a) Responsivity phantom. (b) Setup to measure the diffuse transmittance factor.
Date of download: 7/6/2016 Copyright © 2016 SPIE. All rights reserved. Transmittance profile of a 45-deg slanted FSO communications link showing the available.
Date of download: 7/7/2016 Copyright © 2016 SPIE. All rights reserved. Reflectance of a Pd layer with a thickness of 12 nm onto glass substrate as a function.
Date of download: 7/8/2016 Copyright © 2016 SPIE. All rights reserved. The wind lidar system with iodine vapor filter. Figure Legend: From: Doppler wind.
Date of download: 7/8/2016 Copyright © 2016 SPIE. All rights reserved. Simulation results using the hill-climbing algorithm for comparison with Fig. 3.
Date of download: 7/9/2016 Copyright © 2016 SPIE. All rights reserved. (a) z-scan of the PTLS signal calculated in the mode-matched configuration for different.
Date of download: 7/9/2016 Copyright © 2016 SPIE. All rights reserved. Schematic diagram of the coordinate system; θ is the viewing angle and O.R. represents.
Date of download: 7/9/2016 Copyright © 2016 SPIE. All rights reserved. Photo of measurement boat and unit. Figure Legend: From: Development of shape measurement.
Date of download: 7/9/2016 Copyright © 2016 SPIE. All rights reserved. Schematic diagrams of (a) our novel wide viewing LCD, consisting of a collimated.
Date of download: 7/10/2016 Copyright © ASME. All rights reserved. From: Three-Dimensional Modeling of Supine Human and Transport System Under Whole-Body.
Date of download: 7/11/2016 Copyright © 2016 SPIE. All rights reserved. Configuration of the integrated electro-optic electric field (E-field) measurement.
Date of download: 9/17/2016 Copyright © 2016 SPIE. All rights reserved. Schematic diagram for second-harmonic generation using quadrature configuration.
Date of download: 9/17/2016 Copyright © 2016 SPIE. All rights reserved. The temperature distributions of the front face and the y-z plane at different.
Date of download: 9/17/2016 Copyright © 2016 SPIE. All rights reserved. Schematic of the DOE fringe projection technique. The inset shows the fringes projected.
Date of download: 9/17/2016 Copyright © 2016 SPIE. All rights reserved. Schematic diagram of the main parts of the lidar remote sensing system. Figure.
J. Biomed. Opt. 2010;15(1): doi: / Figure Legend:
Date of download: 9/17/2016 Copyright © ASME. All rights reserved. From: Frequency Tuning of a Nonlinear Electromagnetic Energy Harvester J. Vib. Acoust.
Date of download: 9/17/2016 Copyright © 2016 SPIE. All rights reserved. Top: Schematic representation of input and output signals. LF-intensity-modulated.
Date of download: 9/18/2016 Copyright © 2016 SPIE. All rights reserved. Spectral position of FP modes for two different refractive indices. RI differences.
Date of download: 9/19/2016 Copyright © 2016 SPIE. All rights reserved. The projection of two coplanar circles. (Color online only.) Figure Legend: From:
Date of download: 9/19/2016 Copyright © 2016 SPIE. All rights reserved. Higher-order Raman gain generation with pump power of 0.9 W (——), 2 W (....) and.
Date of download: 10/2/2017 Copyright © ASME. All rights reserved.
Date of download: 10/7/2017 Copyright © ASME. All rights reserved.
Date of download: 10/12/2017 Copyright © ASME. All rights reserved.
Date of download: 10/21/2017 Copyright © ASME. All rights reserved.
Date of download: 11/13/2017 Copyright © ASME. All rights reserved.
Date of download: 12/24/2017 Copyright © ASME. All rights reserved.
Date of download: 12/31/2017 Copyright © ASME. All rights reserved.
Presentation transcript:

Date of download: 9/17/2016 Copyright © 2016 SPIE. All rights reserved. A schematic of a tunable external cavity diode laser in a Littman-Metcalf configuration. The collimated light from a laser diode is incident on the diffraction grating. The zero-order reflection is used as the output from the external cavity laser, while the first-order reflection is used to spatially separate the spectral output from the diode. The prism serves as a retroreflector to provide optical feedback to the diode laser via a second reflection from the diffraction grating, and is used to control the operating frequency of the external cavity laser. Tuning is achieved by rotating the prism. Figure Legend: From: Application of extended tuning range for external cavity diode lasers to water vapor differential absorption measurements Opt. Eng. 2007;46(8): doi: /

Date of download: 9/17/2016 Copyright © 2016 SPIE. All rights reserved. A schematic of the extended tuning system for the ECDL. Figure Legend: From: Application of extended tuning range for external cavity diode lasers to water vapor differential absorption measurements Opt. Eng. 2007;46(8): doi: /

Date of download: 9/17/2016 Copyright © 2016 SPIE. All rights reserved. A schematic of the gas absorption cell experimental setup. Note that the laser makes 36 passes within the gas absorption cell for a total path length of 19.8m. Figure Legend: From: Application of extended tuning range for external cavity diode lasers to water vapor differential absorption measurements Opt. Eng. 2007;46(8): doi: /

Date of download: 9/17/2016 Copyright © 2016 SPIE. All rights reserved. A plot of tuning time necessary to lock the laser system to the on-line wavelength for different initial starting PZT voltage settings, and hence starting wavelengths, of the laser. Figure Legend: From: Application of extended tuning range for external cavity diode lasers to water vapor differential absorption measurements Opt. Eng. 2007;46(8): doi: /

Date of download: 9/17/2016 Copyright © 2016 SPIE. All rights reserved. A plot showing stable on- and off-line tuning of the laser system at approximately one-hour intervals over a span of five hours. Figure Legend: From: Application of extended tuning range for external cavity diode lasers to water vapor differential absorption measurements Opt. Eng. 2007;46(8): doi: /

Date of download: 9/17/2016 Copyright © 2016 SPIE. All rights reserved. An expanded view of the second segment of Fig., displaying the computer-controlled feedback loop of the laser system, fine tuning, and holding the laser output to the on-line wavelength, nm. Figure Legend: From: Application of extended tuning range for external cavity diode lasers to water vapor differential absorption measurements Opt. Eng. 2007;46(8): doi: /

Date of download: 9/17/2016 Copyright © 2016 SPIE. All rights reserved. A plot of the normalized power transmitted through the 19.8-m path length of the gas absorption cell. Absorption by water vapor molecules within the cell is responsible for the reduced on-line signal. Figure Legend: From: Application of extended tuning range for external cavity diode lasers to water vapor differential absorption measurements Opt. Eng. 2007;46(8): doi: /

Date of download: 9/17/2016 Copyright © 2016 SPIE. All rights reserved. A plot of the relative transmission through the gas absorption cell as a function of wavelength. The closed circles represent measurements made by the laser system. The solid line is a theoretical prediction of the absorption by water vapor in the absorption cell using HiTRAN with the in-situ measurements of temperatures and humidity. Figure Legend: From: Application of extended tuning range for external cavity diode lasers to water vapor differential absorption measurements Opt. Eng. 2007;46(8): doi: /