AC―coupled pitch adapters for silicon strip detectors J. Härkönen 1), E. Tuovinen 1), P. Luukka 1), T. Mäenpää 1), E. Tuovinen 1), E. Tuominen 1), Y. Gotra.

Slides:



Advertisements
Similar presentations
Jaakko Härkönen, GSI/FAIR/NUSTAR/S-FRS seminar, Kumpula 6 October 2008 Radiation hard silicon detectors for GSI/FAIR experiments J. Härkönen 1), E. Tuovinen.
Advertisements

Eija Tuominen Siena TEST BEAM RESULTS OF A LARGE AREA STRIP DETECTOR MADE ON HIGH RESISTIVITY CZOCHRALSKI SILICON Helsinki Institute of Physics,
Eija Tuominen DEVELOPMENT OF RADIATION HARD DETECTORS Helsinki Institute of Physics (HIP) In close cooperation with: Microelectronics Centre,
1 Generic Silicon Detector R&D Thomas Bergauer Institute for High Energy Physics (HEPHY) Austrian Academy of Sciences, Vienna for the SiLC Collaboration.
28 June 2002Santa Cruz LC Retreat M. Breidenbach1 SD – Silicon Detector EM Calorimetry.
Performance of the DZero Layer 0 Detector Marvin Johnson For the DZero Silicon Group.
20th RD50 Workshop (Bari)1 G. PellegriniInstituto de Microelectrónica de Barcelona G. Pellegrini, C. Fleta, M. Lozano, D. Quirion, Ivan Vila, F. Muñoz.
Embedded Pitch Adapters a high-yield interconnection solution for strip sensors M. Ullán, C. Fleta, X. Fernández-Tejero, V. Benítez CNM (Barcelona)
Read-out boards Rui de Oliveira 16/02/2009 RD51 WG1 workshop Geneva.
SPiDeR  First beam test results of the FORTIS sensor FORTIS 4T MAPS Deep PWell Testbeam results CHERWELL Summary J.J. Velthuis.
Semiconductor detectors
Charge collection studies on heavily diodes from RD50 multiplication run G. Kramberger, V. Cindro, I. Mandić, M. Mikuž Ϯ, M. Milovanović, M. Zavrtanik.
Charge collection studies on heavily diodes from RD50 multiplication run (update) G. Kramberger, V. Cindro, I. Mandić, M. Mikuž Ϯ, M. Milovanović, M. Zavrtanik.
11 th RD50 Workshop, CERN Nov Results with thin and standard p-type detectors after heavy neutron irradiation G. Casse.
Silicon – On - Insulator (SOI). SOI is a very attractive technology for large volume integrated circuit production and is particularly good for low –
ALBA Synchrotron – 17 June 2010 Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de Barcelona First Measurements on 3D Strips Detectors.
Status of the Low-Resistance (LowR) Strip Sensors Project CNM (Barcelona), SCIPP (Santa Cruz), IFIC (Valencia) Contact person: Miguel Ullán.
Current status of the silicon strip sensor development in Korea
Panja Luukka1 Silicon beam telescope for CMS SLHC detector studies (SiBT Panja Luukka, Sandor Czellar, Jaakko Härkönen, Eija Tuominen, Jorma.
Silicon Sensors for Collider Physics from Physics Requirements to Vertex Tracking Detectors Marco Battaglia Lawrence Berkeley National Laboratory, University.
Pixel 2000 Workshop Christian Grah University of Wuppertal June 2000, Genova O. Bäsken K.H.Becks.
Silicon detector processing and technology: Part II
Update on Micron productions - Comparison of AC & DC coupled devices - Marko Milovanovic*, Phil Allport, Gianluigi Casse, Sergey Burdin, Paul Dervan, Ilya.
Heavy ion irradiation on silicon strip sensors for GLAST & Radiation hardening of silicon strip sensors S.Yoshida, K.Yamanaka, T.Ohsugi, H.Masuda T.Mizuno,
8 July 1999A. Peisert, N. Zamiatin1 Silicon Detectors Status Anna Peisert, Cern Nikolai Zamiatin, JINR Plan Design R&D results Specifications Status of.
Panja Luukka1 Silicon beam telescope (SiBT) and MCz detectors: status and plans for 2008 Erkki Anttila, Sandor Czellar, Jaakko Härkönen, Matti.
Low Resistance Strip Sensors – RD50 Common Project – RD50/ CNM (Barcelona), SCIPP (Santa Cruz), IFIC (Valencia) Contact person: Miguel Ullán.
CERN, November 2005 Claudio Piemonte RD50 workshop Claudio Piemonte a, Maurizio Boscardin a, Alberto Pozza a, Sabina Ronchin a, Nicola Zorzi a, Gian-Franco.
Technology Overview or Challenges of Future High Energy Particle Detection Tomasz Hemperek
NEWATLASPIX: Development of new pixel detectors for the ATLAS experiment upgrade Giulio Pellegrini.
IEEE Nuclear Science Symposium Roma Oct.2004
Joachim Erfle Summary of measurements after first irradiation of HPK samples 19 th RD50 Workshop November 2011 CERN Joachim.
- Performance Studies & Production of the LHCb Silicon Tracker Stefan Koestner (University Zurich) on behalf of the Silicon Tracker Collaboration IT -
9 th “Trento” Workshop on Advanced Silicon Radiation Detectors Genova, February 26-28, 2014 Centro Nacional de MicroelectrónicaInstituto de Microelectrónica.
Central European Consortium R&D of Central European Consortium (CEC) Status & Plans (Sensor Technology) Georg Steinbrück, Hamburg University Aachen DESY.
Development of radiation hard Sensors & Cables for the CBM Silicon Tracking System Sudeep Chatterji On behalf of CBM-STS Collaboration GSI Helmholtz Centre.
Jaakko Härkönen, 6th "Hiroshima" Symposium, Carmel, California, September Magnetic Czochralski silicon as detector material J. Härkönen, E. Tuovinen,
The CMS Silicon Strip Tracker Carlo Civinini INFN-Firenze On behalf of the CMS Tracker Collaboration Sixth International "Hiroshima" Symposium on the Development.
Martin Frey, IEKP, Karlsruhe Erkki Anttila, Sandor Czellar, Jaakko Härkönen, Matti Kortelainen, Tapio Lampén, Panja Luukka, Maria Maksimow,
CNM double-sided 3D strip detectors before and after neutron irradiation Celeste Fleta, Richard Bates, Chris Parkes, David Pennicard, Lars Eklund (University.
Charge Collection, Power, and Annealing Behaviour of Planar Silicon Detectors after Reactor Neutron, Pion and Proton Doses up to 1.6×10 16 n eq cm -2 A.
1 Updates on Punch-through Protection H. F.–W. Sadrozinski with C. Betancourt, A. Bielecki, Z. Butko, A. Deran, V. Fadeyev, S. Lindgren, C. Parker, N.
A New Inner-Layer Silicon Micro- Strip Detector for D0 Alice Bean for the D0 Collaboration University of Kansas CIPANP Puerto Rico.
A novel two-dimensional microstrip sensor for charge division readout D. Bassignana, M. Lozano, G. Pellegrini CNM-IMB (CSIC) M. Fernández, R. Jaramillo,
Trench detectors for enhanced charge multiplication G. Casse, D. Forshaw, M. Lozano, G. Pellegrini G. Casse, 7th Trento Meeting - 29/02 Ljubljana1.
Giulio Pellegrini Actividades 3D G. Pellegrini, C. Fleta, D. Quirion, JP Balbuena, D. Bassignana.
ADC values Number of hits Silicon detectors1196  6.2 × 6.2 cm  4.2 × 6.2 cm  2.2 × 6.2 cm 2 52 sectors/modules896 ladders~100 r/o channels1.835.
Comparison of the AC and DC coupled pixels sensors read out with FE-I4 electronics Gianluigi Casse*, Marko Milovanovic, Paul Dervan, Ilya Tsurin 22/06/20161.
Low Mass, Radiation Hard Vertex Detectors R. Lipton, Fermilab Future experiments will require pixelated vertex detectors with radiation hardness superior.
QA Tests Tests for each sensor Tests for each strip Tests for structures Process stability tests Irradiation tests Bonding & Module assembly Si detectors1272.
3D SEMICONDUCTOR RADIATION DETECTOR R&D AT HIP EUDET-JRA2 MEETING NIKHEF Juha Kalliopuska.
Zheng Li, 96th LHCC open session, 19th November 2008, CERN RD39 Status Report 2008 Zheng Li and Jaakko Härkönen Full author list available at
Panja Luukka. Silicon Beam Telescope (SiBT) Group Since 2007 a collaboration of several CMS institutes has been operating a silicon micro-strip beam telescope.
Investigation of the effects of thickness, pitch and manufacturer on charge multiplication properties of highly irradiated n-in-p FZ silicon strips A.
June T-CAD Simulations of 3D Microstrip detectors a) Richard Bates b) J.P. Balbuena,C. Fleta, G. Pellegrini, M. Lozano c) U. Parzefall, M. Kohler,
24/02/2010Richard Bates, 5th Trento workshop, Manchester1 Irradiation studies of CNM double sided 3D detectors a. Richard Bates, C. Parkes, G. Stewart.
Test beam results of MCz-Si detectors
Preliminary results from 3D CMS Pixel Detectors
First production of Ultra-Fast Silicon Detectors at FBK
High-Resolution Micromegas Telescope for Pion- and Muon-Tracking
Position Sensitive TCT Measurements with 3D-stc detectors
Application of VATAGP7 ASICs in the Silicon detectors for the central tracker (forward part) S. Khabarov, A. Makankin, N. Zamiatin, ,
SuperB SVT Silicon Sensor Requirements
Igor Mandić1, Vladimir Cindro1, Gregor Kramberger1 and Marko Mikuž1,2
Work packages status in Torino and perspectives
Vertex Detector Overview Prototypes R&D Plans Summary.
Metal overhang: an important ingredient against “micro-discharge”
BONDING The construction of any complicated mechanical device requires not only the machining of individual components but also the assembly of components.
Why silicon detectors? Main characteristics of silicon detectors:
Igor Mandić1, Vladimir Cindro1, Gregor Kramberger1 and Marko Mikuž1,2
Presentation transcript:

AC―coupled pitch adapters for silicon strip detectors J. Härkönen 1), E. Tuovinen 1), P. Luukka 1), T. Mäenpää 1), E. Tuovinen 1), E. Tuominen 1), Y. Gotra 2), L. Spiegel 2) 1) Helsinki Institute of Physics, Finland 2) Fermi National Laboratory, USA ● Idea of the concept ● Processing technology ● Performance of AC-coupled pitch adapter ● Test beam data ● Summary

Jaakko Härkönen,17th RD50 Workshop, 18th November 2010, CERN Concept Strip detector hybrids in modern HEP experiments consists usually of 1) AC-coupled strip sensor 2) Pitch Adapter (PA) 3) Printed Circuit Board (PCB) with readout IC's. 1)1) 2)2) 3)3) Capacitive coupling is needed in harsh radiation environment in order to prevent leakage current to be couplet into readout circuit input. CMS TOB sensor module PA is needed as long as sensor segmentation is something else than deep sub-µm IC bonding pitch

Jaakko Härkönen,17th RD50 Workshop, 18th November 2010, CERN Comparison of AC and DC coupled sensor technology ● Strip implant ● Field insulator growth/deposition ● Contact opening ● Poly-Si CVD deposition (high T) ● Poly-Si implant ● Bias resistor etching ● Resistor implant activation (high T) ● Contact opening ● Metallization ● Passivation ● Strip implant ● Field insulator growth/deposition ● Contact opening ● Metallization ● Passivation

Jaakko Härkönen,17th RD50 Workshop, 18th November 2010, CERN Requirements for AC coupled Pitch Adapter ● Must be made of glass (parasitic capacitance) ● Must include bias resistors for every channel ● Resistance should be ~MΩ ● Signal is directly proportional to the coupling capacitance >> C coup should be high C=A × (ε 0 ε/t) ● Thinner dielectric increases C coup but reduces voltage tolerance and risk for pinholes ● Even though strip insulator is between grounded strip implant and floating ground of RO input, some voltage tolerance is required e.g. because of unexpected transients.

Jaakko Härkönen,17th RD50 Workshop, 18th November 2010, CERN Benefits of AC coupling integrated PA ● Consider upgrade project of wafers/sensors. ● Let's assume that AC coupled strip sensor costs 1000 and DC coupled sensor 500 ● AC PA's cost 500 per wafer and standard DC PA's 100 per wafer. ● One gets 10 PA's from one wafer Total cost with AC sensors 10M + 100k (sensors + PA's) Total cost with DC sensors 5M + 500k

Jaakko Härkönen,17th RD50 Workshop, 18th November 2010, CERN...more benefits of AC PA's What happens if sensor gets scratched ? AC coupled strip sensor - Strip capacitor is broken resulting in noisy strip DC coupled strip sensor - Probably nothing because under Al metal there is highly conductive p+ (or n+) implant

Jaakko Härkönen,17th RD50 Workshop, 18th November 2010, CERN Processing of AC coupled adapter ● Bias resistors ● - Sputtered tungsten nitride (WN x ) ● - Room temperature process ● - patterning by hydrogen peroxide wet etching ● Dielectric ● - Aluminum oxide (Al 2 O 3 ) grown by Atomic Layer Deposition ● -ALD is a self-limiting (the amount of film material deposited in each reaction cycle is constant), sequential surface chemistry that deposits conformal thin-films ● -Deposition temperature ~300 0 C i.e. feasible with glass ● -ALD thin-films are pinhole free 300μm

Jaakko Härkönen,17th RD50 Workshop, 18th November 2010, CERN Properties of AC PA Bias resistor 1.1MΩ ±0.8% Al 2 O 3 thickness 45nm Dielectric breakdown at 60V

Jaakko Härkönen,17th RD50 Workshop, 18th November 2010, CERN Detector modules with AC PA and DC coupled sensors 1) p + /n.- /n channels DC coupled sensor, irradiated 1×10 14 n eq /cm 2. Processed at HIP on high resistivity Fz-Si. Pre-irrad V fd about 30V 2) n + /p.- /p channels DC coupled sensor, irradiated 3×10 14 n eq /cm 2. Processed at HIP on high resistivity Fz-Si. Pre-irrad V fd about 20V

Jaakko Härkönen,17th RD50 Workshop, 18th November 2010, CERN CERN North area SPS H2 beamline 225 GeV muon, pion, and mixed beams 10 slot beam telescope based on CMS module test station 8 reference modules and 1-2 DUTs in central slots CMS DAQ electronics with early version of the Tracker SW CMSSW framework used for track reconstruction Test beam setup

Jaakko Härkönen,17th RD50 Workshop, 18th November 2010, CERN Test beam results Signal to Noise After V the noise of these detectors starts to increase and S/N goes down Collected charge 100% CCE equals 40 ADC counts

Jaakko Härkönen,17th RD50 Workshop, 18th November 2010, CERN Cluster size HPK reference sensor pitch = 55μm HPK sensors have inter- mediate strips which partly explain the larger cluster spread

Jaakko Härkönen,17th RD50 Workshop, 18th November 2010, CERN Other studies using AC Pitch Adapters Charge collection studies of heavily irradiated 3D Double-Sided sensors, IEEE NSS Conference Records 2009, Richard L. Bates, C. Parkes, D. Pennicard, B. Rakotomiaramanana, C. Fleta, G. Pellegrini, M. Lozano, U. Parzefall, X. Blot, J. Härkönen and E. Tuovinen Characterization of 75 and 150 micron thin strip and pixel sensore produced at MPP- HLL, P. Weigell et al., 16th RD50 Workshop, Barcelona, Spain, 31 May - 2 June 2010

Jaakko Härkönen,17th RD50 Workshop, 18th November 2010, CERN Summary ● The integration capacitive coupling into pitch adapter potentially reduces costs of a large scale tracker system because product number of wafers × process steps goes down ● Further benefits can be gained by simplified module assembly ● AC PA requires glass processing, i.e. bias resistors and strip dielectrics need to be made <400 0 C ● Tungsten nitride and ALD grown Al 2 O 3 are suitable materials for glass processing ● Test beam results indicate 70-90% CCE and good S/N for detector modules with DC sensor and AC PA.