Reporter: Zhang Lei Supervisor: Prof. Mo Prof. Wang and Prof. Zhang Date: 2016-3-11 1.

Slides:



Advertisements
Similar presentations
UKCCSC Meeting, April 2007 Nottingham Long Term Utilisation To develop, for the first time, catalysts which allow photocatalytic reduction to be.
Advertisements

首 页 首 页 上一页 下一页 本讲内容 投影法概述三视图形成及其投影规律平面立体三视图、尺寸标注 本讲内容 复习: P25~P31 、 P84~P85 作业: P7, P8, P14[2-32(2) A3 (1:1)]
Chapter 11. Alcohols from carbonyl compounds (由羰基化合物制醇).
Methane Conversion to Methanol by Platinum Catalysts By: Sean W. Hanley.
Catalytic Cross-coupling Reactions with Unactivated Alkyl Electrophiles and Alkyl Nucleophiles Heng Su 04/11/2008 Department of Chemistry Brandeis University.
The oxidation of phenylethanol and two derivatives bearing increasingly electron-donating substituents indicates a trend whereby more electron-rich alcohols.
2 Transition metal-free catalytic hydrogenation of ketones Katherine Jolley and Martin Wills Department of Chemistry, The University of Warwick, Coventry,
Fitting (special modeling) 董小波 预习 BR2003, Chap. 7.
第六章 土壤酸碱性. 土壤酸碱性 是指土壤溶液的反应,它反映土壤溶液 中 H + 浓度和 OH - 浓度比例,同时也决定于 土壤胶体上致酸离子( H + 或 Al 3+ )或碱性 离子( Na + )的数量及土壤中酸性盐和碱 性盐类的存在数量。
数 学 系 University of Science and Technology of China DEPARTMENT OF MATHEMATICS 第 3 章 曲线拟合的最小二乘法 给出一组离散点,确定一个函数逼近原函数,插值是这样的一种手段。 在实际中,数据不可避免的会有误差,插值函数会将这些误差也包括在内。
外文文献检索示例. 实验目的: 掌握利用计算机网络检索外文文献的基本方法; 了解熟悉下列数据库的结构、内容并掌握其检索方 法 ; 掌握检索的主要途径:出版物( Publication )、关键 词( Keyword )、作者( Author )等。
信息利用与学术论文写作 Library of Jiangsu University, Zhenjiang Sha Zhenjiang
Year 3 CH3E4 notes: Asymmetric Catalysis, Prof Martin Wills
吉林大学远程教育课件 主讲人 : 杨凤杰学 时: 64 ( 第五十三讲 ) 离散数学. 定义 设 G= ( V , T , S , P ) 是一个语法结构,由 G 产生的语言 (或者说 G 的语言)是由初始状态 S 演绎出来的所有终止符的集合, 记为 L ( G ) ={w  T *
Palladium Catalyzed C-N Bond Formation Jenny McCahill
1 Recent Progress of Photocatalytic Water Splitting and Preliminary Work Zhibin Lei Supervisor: Prof. Can Li Jan. 13, 2003 State Key laboratory of Catalysis,
Raven - Johnson - Biology: 6th Ed. - All Rights Reserved - McGraw Hill Companies The Nature of Molecules Chapter 2 Copyright © McGraw-Hill Companies Permission.
Metal Nanoparticle/Carbon Nanotube Catalysts Brian Morrow School of Chemical, Biological and Materials Engineering University of Oklahoma.
首 页 首 页 上一页 下一页 本讲内容本讲内容 视图,剖视图(Ⅰ) 复习: P107 ~ P115 作业: P48(6-2,6-4), P49( 去 6-6) P50, P51(6-13), P52 P50, P51(6-13), P52 P53 (6-18,6-20) P53 (6-18,6-20)
Introduction Asymmetric reduction of C=N bonds represents a powerful method for the asymmetric formation of chiral amines. 1 Whilst many methods exist.
1 Single electron transfer reaction involving 1,3-dicarbonyl compounds and its synthetic applications Reporter: Jie Yu Oct. 31, 2009.
Recent Progress in sp 3 C-H Activation Catalyzed by Palladium Bo Yao.
Introduction to catalysis Textbook H: Chapter 14 Textbook A: Part IV – Introduction.
Natural Gas: An Alternative to Petroleum? Crabtree, R. H. Chem. Rev. 1995, 95, American Methanol Institute, 2000 Natural gas reserves: ~ 60 years.
Chiral Concave N-Heterocyclic Carbenes 3 rd International Summer School “Supramolecular Systems in Chemistry and Biology“ Tim Reimers Kiel, GER.
Kinetic Isotope Effects in Transition Metal-catalyzed C-H Activation Speaker: CHENG Guijuan Apr. 17 th, 2014.
Basic Chemistry. Atom Isotope Same element, Different # of Neutrons.
We’ve learnt about groups of people who need our help in this unit. Can you tell me who these people are and how we can help them?
Molecular and Gold Nanoparticles Supported N-Heterocyclic Carbene Silver(I) Complexes – Synthesis, Characterization and Catalytic Applications 學 生 :王趙增.
1 Year 3 CH3E4 notes: Asymmetric Catalysis, Prof Martin Wills Reorganised to highlight key areas to learn and understand. You are aware of the importance.
1 Year 3 CH3E4 notes: Asymmetric Catalysis, Prof Martin Wills You are aware of the importance of chirality. This course will focus on asymmetric.
表单自定义 “ 表单自定义 ” 功能是用于制作表单的 工具,用数飞 OA 提供的表单自定义 功能能够快速制作出内容丰富、格 式规范、美观的表单。
__________________________ ___ ___________________________ _____________________ _________ ___________________________.
Supervisor: Yong Huang Reporter: Qian Wang Date: Magical Chiral Spirobiindane Skeletons.
Atom-Economical and Sustainable C-N Bond Formation Reactions from Alcohols and N-Sources via Catalytic Hydrogen Transfer Reactions September 15th, 2015.
Asymmetric BINOL-Phosphate Derived Brønsted Acids: Development and Catalytic Mechanism Reporter: Song Feifei Supervisor: Prof. Yong Huang
Catalytic Heterocycle Synthesis Group 万伯顺 杂环合成中的 环加成与环化反应.
Unit 2 I used to be afraid of the dark. Warm-up Look at the pictures and describe the people’s appearance( 外貌). short, tall, fat, have curly / straight.
Redox Neutral Reactions Wang Chao Redox Economy and Redox Neutral Reactions: Angew. Chem. Int. Ed. 2009, 48, 2854 – 2867.
The “Busch Catalyst”: A Remarkably Diverse Oxidation Catalyst 1)Original Goals and Rationale 2)Ethyl Cross-Bridged Cyclams are successful tight-binding.
金属催化的氧化反应 CYP 450TauD Acc. Chem. Res. 2007, 40, 522–531.
Recycling the Waste: The Development of a Catalytic Wittig Reaction Angew. Chem. Int. Ed. 2009, 48, 6836 –6839.
Unit 9 Have you ever been to an amusement park? Places of interest amusement park aquarium water park zoo space museum.
Conversion of Carbon Dioxide into Methanol with Silanes over N-Heterocyclic Carbene Catalysts Siti Nurhanna Riduan, Yugen Zhang,* and Jackie Y. Ying* Angew.
Reporter: Yang Chao Supervisor: Prof. Yong Huang The Transformation of α ‑ Diazocarbonyl Compounds.
人 有 悲 欢 离 合, 月有阴晴圆缺。月有阴晴圆缺。 华师大版七年级数学第二册 海口市第十中学 数学组 吴锐.
Catalytic Synthesis of α,β- Unsaturated Carbonyl Derivatives 陈殿峰
Reporter: Qinglan Liu Supervisor: Prof. Yong Huang
2014·高考《小易讲名题系列》 新课标Ⅱ英语阅读填空 第36~40题 讲师:汤雨燕.
Enantioselective Reactions Catalyzed by Iron Complexes Pablo Pérez.
SCI 数据库检索练习参考 本练习完全依照 SCI 数据库实际检索过程而 实现。 本练习完全依照 SCI 数据库实际检索过程而 实现。 练习中,选择了可以举一反三的题目,读 者可以根据题目进行另外的检索练习,如: 可将 “ 与 ” 运算检索改为 “ 或 ” 、 “ 非 ” 运算检索 等等。 练习中,选择了可以举一反三的题目,读.
Noble Metals as Catalysts Oxidation of Methanol at the anode of a DMFC Zach Cater-Cyker 4/20/2006 MS&E 410.
Rhodium-catalyzed hydroamination of olefin Baihua YE 06/06/2011.
Photocatalysis based on TiO2
Ulrich Hintermair, Staff Sheehan, Julie Thomsen
Chapter 2: Chemistry Essential Question: Why do you need to know some basic chemistry in order to study biology?
Recent Development in Isocyanide-Based
Transition Metal Catalyzed Amide Bond Formation
Leah G. Dodson, Michael C. Thompson, J. Mathias Weber
CO Stark Shift to Probe the Ionic Liquid-Ag Interface
10/08/09 Chemistry Review.
Novel Water-Soluble N-Heterocyclic Carbene
Baeyer-Villiger Oxidation: Mechanism and Enantioselective Systems
Date:
New Catalysis with Nickel Pincer Complexes
Copper Hydride Catalyzed Hydroamination of Alkenes and Alkynes
Production of Liquid Solar Fuels and Their Use in Fuel Cells
Date:
Chapter 2 Chemistry of Life
Thank you very much Chairman. Good afternoon,
Presentation transcript:

Reporter: Zhang Lei Supervisor: Prof. Mo Prof. Wang and Prof. Zhang Date:

Outline 1.Introduction 2.Recent Developments in CO2 Hydrogenation to Formate 3.Formic Acid Dehydrogenation with Various Metal Complexes 4.Interconversion of CO2 and Formic Acid 5.Recent Developments in CO2 Hydrogenation to Methanol 6.Summary and Future Outlook 2

Outline 1.Introduction 2.Recent Developments in CO2 Hydrogenation to Formate 3.Formic Acid Dehydrogenation with Various Metal Complexes 4.Interconversion of CO2 and Formic Acid 5.Recent Developments in CO2 Hydrogenation to Methanol 6.Summary and Future Outlook 3

1.Introduction High concentration of CO2 Utilization of CO2 Methods 4 Climate change Rising sea levels Photochemical CO2 reduction Electrochemical CO2 reduction CO2 hydrogenation Artificial photosynthesis Bulk electrolysis Using solar-produced H2 Reaction of metal oxides at extremely high temperature

1.Introduction Photochemical CO2 reduction 5

1.Introduction Photochemical CO2 reduction 6 Sato, S. et al., J. Am. Chem. Soc. 2011, 133, 15240− TON 17(24h)

1.Introduction 7 Photochemical CO2 reduction Sekizawa, K.; Ishitani, O. et al., J. Am. Chem. Soc. 2013, 135, 4596−4599. TON 41(9h)

1.Introduction Limitations including: (i) low turnover numbers and low turnover frequencies (ii) product selectivity (i.e., CO, formate, H2,and other minor products); (iii) use of precious metal catalysts; (iv) use of organic solvents and sacrificial reagents; (v) controlling the pH; (vi) the requirement of coupling oxidative and reductivehalf- reactions. 8 Photochemical CO2 reduction

1.Introduction Electrochemical CO2 reduction Main production is CO CO2 hydrogenation Main aim: hydrogen storage Main production: HCOOH,CH3OH Thermal data: 9

1.Introduction CO2 hydrogenation 10 The thermal reduction

1.Introduction 11 (1)CO2 hydrogenation to formate; (2) Formic acid (FA) dehydrogenation; (3) interconversion of CO2 and formic acid; (4) CO2 hydrogenation to methanol.

2.CO2 Hydrogenation to Formate 2.1. Catalysts with Phosphine Ligands 2.2. Catalysts with Pincer Ligands 2.3. Catalysts with N-Heterocyclic Carbene Ligands 2.4. Half-Sandwich Catalysts with/without Proton- Responsive Ligands Electronic Effects Second-Coordination-Sphere Effects Mechanistic Investigations pH-Dependent Solubility and Catalyst Recovery 12

2.1. Catalysts with Phosphine Ligands Pioneering work 13 Solvent effect Inoue, Y. et al., Chem. Lett. 1976, 863−864. Ezhova, N. N. et al., Russ. Chem. Bull. 2002, 51, 2165−2169.

2.1. Catalysts with Phosphine Ligands The role of water 14 Tsai, J. C.; Nicholas, K. M. J. Am. Chem. Soc. 1992, 114,5117−5124. NBD

2.1. Catalysts with Phosphine Ligands Water-soluble catalysts Gassner, F.; Leitner, W. J. Chem. Soc.,Chem. Commun. 1993, 1465−1466. Horvath, H.; Laurenczy, G.; Katho, A. J. Organomet.Chem. 2004, 689, 1036−1045. Mechanism

2.1. Catalysts with Phosphine Ligands Nonprecious-metal catalysts 16 Federsel, C.; Beller, M. et al., Chem. - Eur. J. 2012, 18, 72−75.

2.1. Catalysts with Phosphine Ligands Combination of scCO2 and ionic liquid (IL) 17 TON 1970, TOF 295/h Wesselbaum, S.; Hintermair, U.; Leitner, W. Angew. Chem., Int. Ed. 2012, 51, 8585−8588.

2.1. Catalysts with Phosphine Ligands 18 Novel protocols Xu, Z.; Hicks, J. C. et al., ChemCatChem 2013, 5, 1769−1771. TON 2800(20h)

2.2. Catalysts with Pincer Ligands 19 Tanaka, R.; Nozaki, K. et al., J. Am. Chem. Soc. 2009, 131, 14168− Tanaka, R.; Nozaki, K. et al., Organometallics. 2011, 30, 6742−6750.

2.2. Catalysts with Pincer Ligands 20 Tanaka, R.; Nozaki, K. et al., Organometallics. 2011, 30, 6742−6750.

2.2. Catalysts with Pincer Ligands Secondary coordination sphere interaction (1)proton-responsive ligands; (2) electro-responsive ligands; (3) ligands that can provide a hydrogen bonding functionality; (4) photoresponsive ligands that exhibit a useful change in properties upon irradiation; (5)NADH-type ligands that can work as a hydride source; (6)hemilabile ligands that provide a vacant coordination site. 21

2.2. Catalysts with Pincer Ligands 22 Hydrogen bonding functionality Schmeier, T. J.; Hazari, N. et al., J. Am. Chem. Soc. 2011, 133, 9274−9277.

2.2. Catalysts with Pincer Ligands 23 Nonprecious metals Langer, R.; Milstein, D. et al., Angew. Chem., Int. Ed. 2011, 50, 9948−9952.

2.2. Catalysts with Pincer Ligands 24 Filonenko, G. A.; Pidko, E. A. et al., ChemCatChem 2014, 6, 1526−1530.

2.3. N-Heterocyclic Carbene Ligands 25 Azua, A.; Sanz, S.; Peris, E. Chem. - Eur. J. 2011, 17, 3963−3967. Sanz, S.; Benitez, M.; Peris, E. Organometallics 2010, 29, 275−277.

2.4. Half-Sandwich Catalysts Discovery [Cp*Rh(bpy)Cl]Cl transfer hydrogenation of ketones 26 Himeda, Y. et al., J. Mol. Catal. A: Chem. 2003, 195, 95−100. Electronic Effects

2.4. Half-Sandwich Catalysts Electronic Effects 27 Hammett constants (σp+): the more negative their σp+ value, the stronger is their ability to donate electrons.

2.4. Half-Sandwich Catalysts Electronic Effects 28 Himeda, Y. et al. Organometallics 2007, 26, 702−712. Maenaka, Y.; Suenobu, T.; Fukuzumi, S. Energy Environ. Sci. 2012, 5,7360−7367.

2.4. Half-Sandwich Catalysts Second-Coordination-Sphere Effects 29

2.4. Half-Sandwich Catalysts Second-Coordination-Sphere Effects 30

2.4. Half-Sandwich Catalysts 31 Second-Coordination-Sphere Effects Wang, W.-H.; Himeda, Y. et al., Energy Environ. Sci. 2012, 5, 7923−7926.

2.4. Half-Sandwich Catalysts Mechanistic Investigations 32

2.4. Half-Sandwich Catalysts Kinetic isotope effect (KIE) study [Cp*Ir(4DHBP)(OH2)]2+ D2 in KHCO3/H2O (KIE: 1.19) and in KDCO3/D2O (KIE: 1.20)solution. D2O in H2/KDCO3 (KIE: 0.98). [Cp*Ir(6DHBP)(OH2)]2+ D2O resulted in a larger rate decrease than with D2 (bearing pendant OH groups). RDS 33

2.4. Half-Sandwich Catalysts 34 pH-Dependent Solubility and Catalyst Recovery Himeda, Y. et al., Organometallics 2007, 26, 702−712.

2.4. Half-Sandwich Catalysts pH-Dependent Solubility and Catalyst Recovery 35

3. Formic Acid Dehydrogenation 3.1. Catalysts with Phosphine Ligands Organic Solvent Systems Aqueous Solvent Systems 3.2. Catalysts with Pincer-Type Ligands 3.3. Catalysts with Bidentate C,N-/N,N-Ligands 3.4. Half-Sandwich Catalysts with/without Proton- Responsive Ligands Electronic Effects Pendant-Base Effect Changing RDS of Formic Acid Dehydrogenation Solution pH Changing RDS of Formic Acid Dehydrogenation 3.5. Nonprecious Metals 36

3. Formic Acid Dehydrogenation Thermal data: 37

3.1. Phosphine Ligands Pioneering work 38 Coffey, R. S. Chem. Commun. 1967, 923b. Boddien, A.; Beller, M. et al., Adv. Synth. Catal. 2009, 351, 2517−2520. The role of base

3.1. Phosphine Ligands Facially capping ligand 39 Manca, G.; Beller, M.et al., Organometallics 2013, 32, 7053−7064.

3.1. Phosphine Ligands Facially capping ligand 40

3.1. Phosphine Ligands Base-free FA dehydrogenation 41

3.1. Phosphine Ligands Base-free FA dehydrogenation 42 Oldenhof, S.; Reek, J. N. et al., Chem. - Eur. J. 2013, 19, 11507−11511.

3.1. Phosphine Ligands Aqueous Solvent Systems 43 Fellay, C.; Dyson, P. J.; Laurenczy, G. Angew. Chem., Int. Ed. 2008, 47, 3966−3968.

3.2. Catalysts with Pincer-Type Ligands Mechanism 44 Vogt, M.; Milstein, D. Chem. Sci. 2014, 5, 2043−2051.

3.3. Half-Sandwich Catalysts 45 Barnard, J. H.; Xiao, J. Chem. Sci. 2013, 4, 1234−1244.

3.4. Proton-Responsive Ligands Electronic Effects 46

3.4. Proton-Responsive Ligands Pendant-Base Effect Changing RDS of Formic Acid Dehydrogenation 47

3.4. Proton-Responsive Ligands KIE studies With Proton-Responsive Ligands DCO2D replaces HCO2H--2, D2O replaces H2O--1 Without Proton-Responsive Ligands D2O in place of H2O—2.1 DCO2D instead of HCO2H proton relay incorporating a H2O molecule 48 proton relay incorporating a H2O molecule

3.4. Proton-Responsive Ligands Solution pH Changing RDS of Formic Acid Dehydrogenation 49 KIE studies pH 1.7 DCO2D (KIE: 2.04) D2O (KIE: 1.46) pH 3.5 D2O(KIE: 2.70) DCO2D/DCO2Na(KIE: 1.48)

3.4. Proton-Responsive Ligands 50 Wang, W.-H.; Himeda, Y. ACS Catal. 2015, 5, 5496−5504.

3.4. Proton-Responsive Ligands The thermochemistry 51

3.4. Proton-Responsive Ligands The thermochemistry 52

3.5. Nonprecious Metals 53

3.5. Nonprecious Metals 54 Bielinski, E. A.; Hazari, N.; Schneider, S. J. Am. Chem. Soc. 2014, 136,10234−10237.

3.5. Nonprecious Metals 55 Myers, T. W.; Berben, L. A. Chem. Sci. 2014, 5, 2771−2777.

4. Interconversion of CO2 and Formic Acid 56

4. Interconversion of CO2 and Formic Acid 57 Hull, J. F.; Himeda, Y.; Nat. Chem. 2012, 4, 383−388.

5.CO2 Hydrogenation to Methanol Hydrogenation of Formate, Carbonate, Carbamate, and Urea Derivatives to MeOH 58

5.CO2 Hydrogenation to Methanol 59 Balaraman, E.; Milstein, D. Nat. Chem. 2011, 3, 609−614.

5.CO2 Hydrogenation to Methanol 60 Han, Z.; Ding, K. Angew. Chem., Int. Ed. 2012, 51, 13041−13045.

5.CO2 Hydrogenation to Methanol Catalytic Disproportionation of Formic Acid to MeOH 61 TON200 ( 200h ) Miller, A. J. M.; Goldberg, K. I. Angew. Chem., Int. Ed. 2013, 52, 3981−3984.

5.CO2 Hydrogenation to Methanol Cascade Catalysis of CO2 to MeOH 62 Huff, C. A.; Sanford, M. S. J. Am. Chem. Soc. 2011, 133, 18122−18125.

5.CO2 Hydrogenation to Methanol Direct Hydrogenation of CO2 to MeOH 63 Wesselbaum, S.; Leitner, W. Chem. Sci. 2015, 6, 693−704.

6. Summary and Future Outlook Reduction of CO2 to direct or indirect fuel Three methods, CO2 hydrogenation Phosphine Ligands, Pincer Ligands, Half-Sandwich Catalysts et al. Efficiency, low cost, mild conditions Reduction of CO2 to MeOH 64

Acknowledgement Prof. Mo. Prof. Wang. and Prof. Zhang. PhD Chu. All of you here. Thank You! 65

PPT No.25 我问了一下褚师兄,他和您一样,觉得这种应该 不是氮杂卡宾。这个可能是本篇文献作者归类归 错了。 66

PPT No 作者认为可能机理是上面这样的,主要根据 DFT ,核磁,红外光谱得出的。核 磁中没有氢与 Ru 成键形成的峰;用 IR 可以监测到有 [Ru(κ 3 -triphos Me )-(η 1 - OOCH)(η 2 -OOCH)] 的存在,所以提出了上面的机理。