How Genes Work: From DNA to RNA to Protein Chapter 17
Figure 17.6 (a) Tobacco plant expressing a firefly gene gene (b) Pig expressing a jellyfish
Types of RNA
Steps to Proteinsynthesis 1.Transcription- DNA to mRNA 2.RNA Processing- remove noncoding segments 3.Translation- mRNA to tRNA to Amino Acid Sequence
Complementary Base Pairing A=UT=AC=GG=CA=UT=AC=GG=C DNA Nitrogen Bases RNA Nitrogen Bases The code travels from DNA to mRNA to tRNA to protein.
Complementary Base Pairing A=UU=AC=GG=CA=UU=AC=GG=C mRNA Nitrogen Bases tRNA Nitrogen Bases The code travels from DNA to mRNA to tRNA to protein.
Figure 17.4 DNA template strand TRANSCRIPTION mRNA TRANSLATION Protein Amino acid Codon Trp Phe Gly 5 5 Ser UUUUU G G GGCC T C A A AAAAA TTT T T G GGG CCC GG DNA molecule Gene 1 Gene 2 Gene 3 C C
Figure 17.3b-1 Nuclear envelope DNA Pre-mRNA (b) Eukaryotic cell TRANSCRIPTION
Figure 17.3b-2 RNA PROCESSING Nuclear envelope DNA Pre-mRNA (b) Eukaryotic cell mRNA TRANSCRIPTION
Figure 17.3b-3 RNA PROCESSING Nuclear envelope DNA Pre-mRNA (b) Eukaryotic cell mRNA TRANSCRIPTION TRANSLATION Ribosome Polypeptide
Initiation Complex Single binding protein Replication Fork Initiation Complex Initiation Complex
RNA Polymerase 5’ 3’ 5’ 3’ 5’ 3’ Promoter Terminator RNA Polymerase Initiation Complex Initiation Complex
Pre-mRNA DNA recoils
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Figure RNA processing: RNA splicing TRANSCRIPTION RNA PROCESSING DNA Pre-mRNA mRNA TRANSLATION Ribosome Polypeptide 5 Cap Exon Intron Exon Intron Exon 3 Poly-A tail Introns cut out and exons spliced together Coding segment 5 Cap UTR Pre-mRNA mRNA
Figure RNA transcript (pre-mRNA) 5 Exon 1 Protein snRNA snRNPs Intron Exon 2 Other proteins
Figure RNA transcript (pre-mRNA) 5 Exon 1 Protein snRNA snRNPs Intron Exon 2 Other proteins Spliceosome 5
Figure RNA transcript (pre-mRNA) 5 Exon 1 Protein snRNA snRNPs Intron Exon 2 Other proteins Spliceosome 5 Spliceosome components Cut-out intron mRNA 5 Exon 1 Exon 2
Gene DNA Exon 1 Exon 2Exon 3 Intron Transcription RNA processing Translation Domain 3 Domain 2 Domain 1 Polypeptide Figure 17.13
Figure Polypeptide Ribosome Trp Phe Gly tRNA with amino acid attached Amino acids tRNA Anticodon Codons UUUUGGGGC A C C C C G AAA C G C G 5 3 mRNA
Figure Amino acid attachment site 3 5 Hydrogen bonds Anticodon (a) Two-dimensional structure (b) Three-dimensional structure (c) Symbol used in this book Anticodon 3 5 Hydrogen bonds Amino acid attachment site 5 3 AAG
Aminoacyl-tRNA synthetase (enzyme) Amino acid PPP Adenosine ATP Figure
Aminoacyl-tRNA synthetase (enzyme) Amino acid PPP Adenosine ATP P P P P P i i i Adenosine Figure
Aminoacyl-tRNA synthetase (enzyme) Amino acid PPP Adenosine ATP P P P P P i i i Adenosine tRNA Adenosine P tRNA AMP Computer model Amino acid Aminoacyl-tRNA synthetase Figure
Aminoacyl-tRNA synthetase (enzyme) Amino acid PPP Adenosine ATP P P P P P i i i Adenosine tRNA Adenosine P tRNA AMP Computer model Amino acid Aminoacyl-tRNA synthetase Aminoacyl tRNA (“charged tRNA”) Figure
Figure 17.17b Exit tunnel A site (Aminoacyl- tRNA binding site) Small subunit Large subunit P A P site (Peptidyl-tRNA binding site) mRNA binding site (b) Schematic model showing binding sites E site (Exit site) E
Figure 17.17c Amino end mRNA E (c) Schematic model with mRNA and tRNA 5 Codons 3 tRNA Growing polypeptide Next amino acid to be added to polypeptide chain
Figure Initiator tRNA mRNA Start codon Small ribosomal subunit mRNA binding site 3 Translation initiation complex U U A A G C P P site i GTPGDP Met Large ribosomal subunit EA 5
Amino end of polypeptide mRNA 5 E P site A site 3 Figure
Amino end of polypeptide mRNA 5 E P site A site 3 E GTP GDP P i P A Figure
Amino end of polypeptide mRNA 5 E P site A site 3 E GTP GDP P i P A E P A Figure
Amino end of polypeptide mRNA 5 E A site 3 E GTP GDP P i P A E P A GTP GDP P i P A E Ribosome ready for next aminoacyl tRNA P site Figure
Figure Release factor Stop codon (UAG, UAA, or UGA) 3 5
Figure Release factor Stop codon (UAG, UAA, or UGA) Free polypeptide 2 GTP 2 GDP 2 i P
Figure Release factor Stop codon (UAG, UAA, or UGA) Free polypeptide 2 GTP GDP 2 i P
mRNA Codon Chart DNA – T A C G G G T C G A T A A T T mRNA – A U G C C C A G C U A U U A A AA Sequence – Met-Pro-Ser-Tyr-Stop
DNA = AGCTTACGGGATAACTCCC mRNA = AUGCCCUAUUGA Met-Pro-Tyr-Stop
BIOLOGY PRACTICE PROTEINSYNTHESIS 3’ ACGGCTACGGGCTTCGAAAAACTCACACA 5’ 5’ ACACAATTAGGATCCAAACATCACTGGAC 3’
BIOLOGY PRACTICE PROTEINSYNTHESIS 3’ ACGGCTACGGGCTTCGAAAAACTCACACA 5’ 5’ AUGCCCGAAGCUUUUUGAGUGUGU3’ Met-Pro-Glu-Ala-Phe-Stop 5’ ACACAATTAGGATCCAAACATCACTGGAC 3’ 3’ UGUGUUAAUCCUAGGUUUGUA 5’ Met-Phe-Gly-Ser-Stop
Figure 17.5 Second mRNA base First mRNA base (5 end of codon) Third mRNA base (3 end of codon) UUU UUC UUA CUU CUC CUA CUG Phe Leu Ile UCU UCC UCA UCG Ser CCU CCC CCA CCG UAU UAC Tyr Pro Thr UAA Stop UAG Stop UGA Stop UGU UGC Cys UGG Trp GC U U C A U U C C C A U A A A G G His Gln Asn Lys Asp CAU CGU CAC CAA CAG CGC CGA CGG G AUU AUC AUA ACU ACC ACA AAU AAC AAA AGU AGC AGA Arg Ser Arg Gly ACGAUG AAG AGG GUU GUC GUA GUG GCU GCC GCA GCG GAU GAC GAA GAG Val Ala GGU GGC GGA GGG Glu Gly G U C A Met or start UUG G
Figure Completed polypeptide Incoming ribosomal subunits Start of mRNA (5 end) End of mRNA (3 end) (a) Polyribosome Ribosomes mRNA (b) 0.1 m Growing polypeptides
Gene Mutations Changes in the base sequence of a single gene
Point Mutation Mutation involving the substitution of one base.
NormalSickle
Frameshift Mutation Mutation involves a change in the reading frame of the codon. Example: Deletion
The Rock Pocket Mouse