GAP G6P Ru5P CO 2 F6P 6PG OAA CIT ICIT AKG SUC PEP PYR AcCoA 3PG S7P GLOX X5P R5P E4P F6P FUM Glucose ①②③④⑤⑥ ( ④⑤⑥ ) ( ③②① ④⑤⑥ ) (①)(①) ( ②③④⑤⑥ ) RuBP.

Slides:



Advertisements
Similar presentations
Proteins: Structure reflects function….. Fig. 5-UN1 Amino group Carboxyl group carbon.
Advertisements

Oxalate (µmol/gFW) Itaconate (µmol/gFW) r=-0.702** Citrate (µmol/gFW) r=0.389 Isocitrate (µmol/gFW) Ascorbate (µmol/gFW) r=0.052 r=0.195 New Leaves 10.
BY: SHERENE MINHAS. Agr Glu Thr Ile Glu Ser Leu Ser Ser Ser Glu Glu Ser Ile Pro Glu Tyr Lys Gln Lys Val Glu Lys Val Lys His Glu Asp Gln Gln Gln Gly Thr.
Chapter 26 Amino Acids Metabolism.
FCH 532 Lecture 22 Chapter 26: Amino acid metabolism
Gluconeogenesis By Amr S. Moustafa, M.D.; Ph.D. Assistant Prof. & Consultant, Medical Biochemistry Dept. College of Medicine, KSU
NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable.
Protein turnover Catabolism of amino acids II
3Glucose-6-P 3Ru5P + Gln F6P + E4P + R5P 3PG NH3 + 2 PEP + E4P + R5P + Serine Tryptophan + pyruvate + GAP + CO2.
Learning Targets “I Can...” -State how many nucleotides make up a codon. -Use a codon chart to find the corresponding amino acid.
Metabolic Flux Analysis by MATLAB Le You
Supplementary Fig. 1 Relative concentrations of amino acids after transamination reaction catalyzed by PpACL1, α- ketoglutarate as the amino acceptor.
Table 4. Statistical significance of parents and F1 hybrids of maize for various grain quality traits Qurban Ali et al. Gene Action for Various Grain and.
Proteins Tertiary Protein Structure of Enzyme Lactasevideo Video 2.
Arginine, who are you? Why so important?. Release 2015_01 of 07-Jan-15 of UniProtKB/Swiss-Prot contains sequence entries, comprising
Useful shell commands head/tail, cut, sort, uniq Virginie Orgogozo March 2011.
Useful shell commands head/tail, cut, sort, uniq Virginie Orgogozo March 2011.
Table 2. the contents of free amino acids
© 2018 Pearson Education, Inc.
Catabolism of N in proteins and aminoacids
Amino acids.
32 amino acids is a critical length
Amino acid metabolism Metabolism of amino acids differs, but 3 common reactions: Transamination Deamination Decarboxylation.
Reference conditions Simulation selector Total ATP production:
Transcription, Translation & Protein Synthesis
3 Intracellular metabolic fluxes in a tpi1Δnde1,2Δgut2ΔSaccharomyces cerevisiae strain determined by independently fitting the mass isotopomer fractions.
Shortened validation procedure for a method of quantitative analysis of 45 amino acids in plasma on tandem mass spectrometer Marija Zekušić1, Ana Škaričić1,
Collagen By: Yurani Farfan.
BIOLOGY 12 Protein Synthesis.
Human placenta glutathione transferase (GST; EC
Cathode (attracts (+) amino acids)
Protein Structure FDSC400. Protein Functions Biological?Food?
Gluconeogenesis Mainly occurs in cytosol
Volume 20, Issue 8, Pages (August 2013)
PROTEIN SYNTHESIS.
מרכיבי הדם.
The genetic code © 2016 Paul Billiet ODWS.
Figure 3.14A–D Protein structure (layer 1)
Intracellular Compartments and Protein Sorting
Similar Figures Corresponding angles are the same. Corresponding sides are proportional.
The forces at work on proteins/ glutamic acid and valine
Haixu Tang School of Inforamtics
Quiz#8 LC710 10/20/10 name___________
Entry Task Apply: Suppose a template strand of DNA had the following sequence: DNA: T A C G G A T A A C T A C C G G G T A T T C A A What would.
Fig. 5-UN1  carbon Amino group Carboxyl group.
Amino Acids Amine group -NH2 Carboxylic group -COOH
It og Sundhed Thomas Nordahl Petersen, Associate Professor
South African amaXhosa patients with atopic dermatitis have decreased levels of filaggrin breakdown products but no loss-of-function mutations in filaggrin 
Proteins Genetic information in DNA codes specifically for the production of proteins Cells have thousands of different proteins, each with a specific.
Cytochrome.
The 20 amino acids.
Tay Sachs vs Sickle cell
Levels of Protein Structure
How to Test an Assertion
Stephen P. Long, Amy Marshall-Colon, Xin-Guang Zhu  Cell 
Translation.
The 20 amino acids.
It og Sundhed Thomas Nordahl Petersen, Associate Professor
Minho Noh, Seung Min Yoo, Won Jun Kim, Sang Yup Lee  Cell Systems 
Chapter 18 Naturally Occurring Nitrogen-Containing Compounds
What is the name of the amino acid shown below?
Single-Gene Disorders: What Role Could Moonlighting Enzymes Play?
Example of regression by RBF-ANN
Thomas Nordahl Petersen, Associate Prof, Food DTU
“When you understand the amino acids,
Justin Spiriti Zuckerman Lab MMBioS meeting 5/22/2014
Introduction to Bioinformatics II
Affinity maturation of high-affinity human PfCSP NANP antibodies
Thomas Nordahl Petersen, Associate Bioinformatics, DTU
Fig. 3 Organization of the active site of DHHC20.
Presentation transcript:

GAP G6P Ru5P CO 2 F6P 6PG OAA CIT ICIT AKG SUC PEP PYR AcCoA 3PG S7P GLOX X5P R5P E4P F6P FUM Glucose ①②③④⑤⑥ ( ④⑤⑥ ) ( ③②① ④⑤⑥ ) (①)(①) ( ②③④⑤⑥ ) RuBP GAP ( ①②①②③④⑤ ) ( ①②③ ) CO 2 ① ( ①②① ③④⑤ ) ( ①②①②③④ ) 3PG Glct ( ②① ) ① ( ①②③① ) ( ④③②②①① ) MAL ( ②③ ) GLX SER CO 2 GLY C1 CO 2 GLY PHE TYR ①②③④⑤⑥ ①②③④⑤ ①② ①②③ ( ③④⑤ ) ( ①②③④⑤⑥ ) ( ①②③④⑤ ) ( ①② ) ①② ( ①② ) ①②③④⑤⑥ ( ①②③④⑤⑥ ) ①②③ ( ①②③ ) ①②③ ( ①②③ ) ①②③ ①② ①②③④ ①②③④⑤⑥ ( ①②③④⑤⑥ ) ①②③④⑤⑥ ( ①②③④⑤ ) ①②③④⑤ ( ⑤④③② ) ①②③④ ( ②③④⑤ ) ①②③④ ( ①②③④ ) ( ④③②① ) ( ①②③④ ) ( ④③②① ) ①②③④ ( ①②③ ) CO 2 (④)(④) ① ( ①② ) ①② ( ⑥③④⑤ ⑤④③⑥ ) ( ①②②① ) ( ①②③④⑤ ) ①②③④⑤ ( ③④⑤ ) ①②③④⑤⑥⑦ ①②③ ( ①②③①②③ ) ( ④⑤⑥⑦ ) ①②③④⑤⑥ ①②③④ ( ③④⑤ ) ( ①② ) ①②③ ( ①②③ ) ①② (③)(③) (①)(①) (②)(②) ① ( ①②③ ) ① CO 2 (①)(①) ① (⑥)(⑥) ① ① (①)(①) methysuccinyl-CoA ① ( ①①②①② ) CO 2 ①②③④⑤ ( ① and ④ ) propionyl-CoA ( ④③ ) GLOX ①②③ ( ①②⑤ ) CO 2 ① SUC-CoA ①②③④ ( ①②③① ) ( ①②③④ or ④③②① ) malonyl-CoA 3-hydroxypropionate ( ①②① ) ①②③ ( ①②③ ) ①②③ malyl-CoA ( ①②③④ ) ( ①② ) ①②③④ AcCoA ①② ( ④③ ) SER C1 ①②③ ( ①②③ ) (③)(③) ( ①② ) 4-hydroxybutyrate ( ④③②① ) Acetoacetyl-CoA ( ①②③④ ) ①②③④ AcCoA ①② ( ①② ) ( ③④ ) ALA PYR ①②③ Citramalate ( ①②②①③ ) ①②③④⑤ CO 2 ① ( ④③②⑤ ) 2-ketobutyrate ①②③④ 2-hydroxyethyl-ThPP ( ②③ ) ①② ( ①②③①②④ ) 2-keto-3-methyl-valerate ①②③④⑤⑥ Ile ( ①②②③④① ) CO (①)(①) formate (②)(②) CO 2 ① ① ① ① CYS ① ( ③②① ) (①)(①) CO 2 ① (①)(①) (①①)(①①)

GlycolysisOxidative Pentose Phosphate Pathway Glucose (abcdef)  G6P (abcdef)G6P (abcdef)  6PG (abcdef) G6P (abcdef)  F6P (abcdef)6PG (abcdef)  Ru5P (bcdef) + CO 2 (a) F6P (abcdef)  FBP (abcdef)Ru5P (abcde)  X5P (abcde) FBP (abcdef)  DHAP (cba) + GAP (def)Ru5P (abcde)  R5P (abcde) DHAP (abc)  GAP (abc)X5P (abcde) + R5P (fghij)  S7P (abfghij) + GAP (cde) GAP (abc)  3PG (abc)S7P (abcdefg) + GAP (hij)  F6P (abchij) + E4P (defg) 3PG (abc)  PEP (abc)X5P (abcde) + E4P (fghi)  F6P (abfghi) + GAP (cde) PEP (abc)  PYR (abc) Calvin Cycle TCA Cycle Ru5P (abcde)  RuBP (abcde) PYR (abc)  AcCoA (bc) + CO 2 (a)RuBP (abcde) + CO 2 (f)  3PG (fba + cde) OAA (abcd) + AcCoA (ef)  CIT (dcbfea)X5P (abcde)  Ru5P (abcde) OAA (abcd) + AcCoA (ef)  CIT (efbcda) Citrate (Re)-synthaseR5P (abcde)  Ru5P (abcde) CIT(abcdef)  ICIT (abcdef)GAP (abc) + S7P (defghjk)  X5P (deabc) + R5P (fghjk) ICIT (abcdef)  AKG (abcde) + CO 2 (f)E4P (abcd) + F6P (efghjk)  GAP (hjk) + S7P (efgabcd) AKG (abcde)  SucCoA (½ bcde + ½ edcb) + CO 2 (a)GAP (abc) + F6P (defghi)  X5P (deabc) + E4P (fghi) SucCoA (abcd)  SUC (½ abcd + ½ dcba)E4P (abcd) + DHAP (efg)  SBP (gfeabcd) SUC (½ abcd + ½ dcba)  FUM (½ abcd + ½ dcba)SBP (abcdefg)  S7P(abcdefg) FUM (½ abcd + ½ dcba)  MAL (abcd) C1 metabolism MAL (abcd)  OAA (abcd)Ser (abc)  GLY (ab) + C1 (c ) EMCP Pathway GLY (ab)  C1 (b) + CO 2 (a) AcCoA (ab) + AccoA (cd) + CO 2 (e)  methylsuccinyl-CoA (acdeb) Amino Acid Biosynthesis methylsuccinyl-CoA (abcde)  propionyl-CoA (abe) +GLOX (dc) AKG (abcde)  Glu (abcde) propionyl-CoA (abc) + CO 2 (d)  SucCoA (abcd) Glu (abcde)  Gln (abcde) 3-hydroxypropionate/4-hydroxybutyrate pathway Glu (abcde)  Pro (abcde) AcCoA (ab) + CO 2 (c)  malonyl-CoA (abc) Glu (abcde) + CO 2 (f)  Arg (abcdef) malony-CoA (abc)  3-hydroxypropionate (cba)OAA (abcd)  Asp (abcd) 3-hydroxypropionate (abc)  propionyl-CoA (abc) Asp (abcd)  Asn (abcd) propionyl-CoA (abc) + CO 2 (d)  SucCoA (abcd) PYR (abc)  Ala (abc) SucCoA (abcd) + malate (efgh)  SUC (abcd) + malyl-CoA (efgh) 3PG (abc)  Ser (abc) malyl-CoA (abcd)  GLOX (dc) + AcCoA (ab) Thr (abcd)  Gly (ab) + AcCoA (cd) + NADH SucCoA (abcd)  4-hydroxybutyrate (dcba) Ser (abc)  Cys (abc) 4-hydroxybutyrate (abcd)  AcCoA (ab + cd)Asp (abcd) + PYR (efg)  LYS (1/2 bcdgfe + 1/2 fgdcba) Entner-Doudoroff Pathway Asp (abcd)  Thr (abcd) 6PG (abcdef)  PYR (abc) + GAP (def)Asp (abcd) + C1 (e)  Met (abcde) Glyoxylate Shunt Pyr (abc) + Pyr (def)  Val (abcef) + CO 2 (d) ICIT (abcdef)  GLOX (ab) + SUC (½ edcf + ½ fcde)AcCoA (ab) + Pyr (cde) + Pyr (fgh)  Leu (abdghe) + CO 2 (c + f) GLOX (ab) + AcCoA (cd)  MAL (abdc)Thr (abcd) + Pyr (efg)  Ile (abfcdg) + CO 2 (e) Anaplerotic Reactions PEP (abc) + PEP (def) + E4P (ghij)  Phe (abcefghij) + CO 2 (d) MAL (abcd)  PYR (abc) + CO 2 (d) PEP (abc) + PEP (def) + E4P (ghij)  Tyr (abcefghij) + CO 2 (d) MAL (abcd)  PYR (abc) + CO 2 (d) Ser (abc) + R5P (defgh) + PEP (ijk) + E4P (lmno)  Trp (abcedklmnoj) + CO 2 (i) + GAP (fgh) PEP (abc) + CO 2 (d)  OAA (abcd) R5P (abcde) + C1 (f)  His (edcbaf) OAA (abcd)  PEP (abc) + CO 2 (d) Citramalte pathway Wood-Ljungdahl pathway AcCoA (ab) + PYR (cde)  Citramalate (cdbae) AcCoA (ab)  CO (a) + formate (b) Citramalate (abcde)  2-ketobutyrate (dcbe) + CO 2 (a) formate (a)  CO 2 (a) 2-ketobutyrate (abcd) + PYR (efg)  Ile (abcfgd) + CO 2 (e)