Infrared spectroscopy of planetological molecules Isabelle Kleiner Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), Créteil, France.

Slides:



Advertisements
Similar presentations
D. Chris Benner and V Malathy Devi College of William and Mary Charles E. Miller, Linda R. Brown and Robert A. Toth Jet Propulsion Laboratory Self- and.
Advertisements

High sensitivity CRDS of the a 1 ∆ g ←X 3 Σ − g band of oxygen near 1.27 μm: magnetic dipole and electric quadrupole transitions in different bands of.
Toward a global model of low-lying vibrational states of methyl cyanide, CH 3 CN: the v 4 = 1 state at 920 cm –1 and its interactions with nearby states.
Spectroscopy for Hot Super- Earth Exoplanets P. F. Bernath and M. Dulick Department of Chemistry & Biochemistry Old Dominion University, Norfolk, VA.
1 TCCON at Caltech, May 2008 New Line Parameters for Near-IR Methane and the Oxygen A-Band presented by Linda R. Brown (JPL) World-wide Effort Belgium,
HIGH-RESOLUTION ANALYSIS OF VARIOUS PROPANE BANDS: MODELING OF TITAN'S INFRARED SPECTRUM J.-M. Flaud.
The Water Molecule: Line Position and Line Intensity Analyses up to the Second Triad L. H. Coudert, a G. Wagner, b M. Birk, b and J.-M. Flaud a a Laboratoire.
Reflection Spectra of Giant Planets With an Eye Towards TPF (and EPIC & ECLIPSE) Jonathan J. Fortney Mark S. Marley NASA Ames Research Center 2005 Aspen.
Theoretical work on the water monomer and dimer Matt Barber Jonathan Tennyson University College London September 2009.
S&MPO linelist of 16 O 3 in the range 6000 – 7000 cm -1. M.-R. De Backer-Barilly #, Semen N. Mikhailenko*, Yurii Babikov*, Alain Campargue §, Samir Kassi.
PRESSURE BROADENING AND SHIFT COEFFICIENTS FOR THE BAND OF 12 C 16 O 2 NEAR 6348 cm -1 D. CHRIS BENNER and V MALATHY DEVI Department of Physics,
Titan’s Atmospheric Chemistry Emily Schaller GE/AY 132 March 2004.
9th Biennal HITRAN Conference Harvard-Smithsonian Center for Astrophysics June 26–28, 2006 GLOBAL FREQUENCY AND INFRARED INTENSITY ANALYSIS OF 12 CH 4.
 ( ) 0+   ( ) 0–  4 1 Results at 2.5 microns 2 +( ) 1 II (
9th HITRAN Database & Atmospheric Spectroscopy Applications conferences Formaldehyde broadening coefficients Agnès Perrin Laboratoire Interuniversitaire.
A.Perrin: Ohio-State 62th Molecular Symposium, June 2007 New analysis of the 3 & 4 bands of HNO 3 by high resolution Fourier transform spectroscopy in.
Jet Propulsion Laboratory California Institute of Technology 1 V-1 11 th HITRAN Conference, Cambridge, MA, June 16-18, 2010 The importance of being earnest.
Observations of SO 2 spectra with a quantum cascade laser spectrometer around 1090 and 1160 cm -1. Comparison with HITRAN database and updated calculations.
Agnés Perrin Laboratoire Interuniversitaire des Systémes Atmosphériques (LISA), CNRS, Université Paris XII, Créteil C.Bray,
EXPERIMENTAL ABSORPTION SPECTRA OF HOT CH 4 IN THE PENTAD AND OCTAD REGION ROBERT J. HARGREAVES MICHAEL DULICK PETER F.
IR EMISSION SPECTROSCOPY OF AMMONIA: LINELISTS AND ASSIGNMENTS. R. Hargreaves, P. F. Bernath Department of Chemistry, University of York, UK N. F. Zobov,
11 Collisional effects on spectral shapes and remote sensing H. Tran LISA, CNRS UMR 7583, Université Paris-Est Créteil and Université Paris Diderot
LINE PARAMETERS OF WATER VAPOR IN THE NEAR- AND MID-INFRARED REGIONS DETERMINED USING TUNEABLE LASER SPECTROSCOPY Nofal IBRAHIM, Pascale CHELIN, Johannes.
An Analysis of the 3 band of HTO aided by the Partridge and Schwenke PES Modou Tine and Laurent H. Coudert Laboratoire Inter-Universitaire des Systèmes.
First high resolution analysis of the 5 3 band of nitrogen dioxide (NO 2 ) near 1.3 µm Didier Mondelain 1, Agnès Perrin 2, Samir Kassi 1 & Alain Campargue.
Jet Propulsion Laboratory California Institute of Technology The College of William and MaryUniversity of Lethbridge.
Spectral Line Parameters Including Temperature Dependences of N 2 - and Self-broadened Widths in the Region of the 9 band of C 2 H 6 using a Multispectrum.
Self- and air-broadened line shape parameters in the band of 12 CH 4 : cm -1 V. Malathy Devi Department of Physics The College of William.
LINE PARAMETERS OF THE PH 3 PENTAD IN THE 4-5 µm REGION V. MALATHY DEVI and D. CHRIS BENNER College of William and Mary I.KLEINER CNRS/IPSL-Universites.
New H 2 16 O measurements of line intensities around 1300 cm -1 and 8800 cm - 1 Oudot Charlotte Groupe de Spectrométrie Moléculaire et Atmosphérique Reims,
Jonathan Tennyson Physics and Astronomy UCL Paris, Nov 2008 Molecular linelists for extrasolar planets Artist’s impression of HD189733b C. Carreau, ESA.
Hot summer of HITRAN2008 I. E. Gordon L. S. Rothman.
Emission Spectra of H 2 17 O and H 2 18 O from 320 to 2500 cm -1 Semen MIKHAILENKO 1, Georg MELLAU 2, and Vladimir TYUTEREV 3 1 Laboratory of Theoretical.
Methyl Bromide : Spectroscopic line parameters in the 7- and 10-μm region D. Jacquemart 1, N. Lacome 1, F. Kwabia-Tchana 1, I. Kleiner 2 1 Laboratoire.
1. Databases of Infrared Molecular Parameters for Astronomy 0.7 to 1000 μm (14000 to 10 cm -1 ) Linda R. Brown Jet Propulsion Laboratory California Institute.
Methyl Bromide : Spectroscopic line parameters in the 10-μm region D. Jacquemart 1, N. Lacome 1, F. Kwabia-Tchana 1, I. Kleiner 2 1 Laboratoire de Dynamique,
ASSESSMENT OF SPECTROSCOPIC DATABASE ARCHIVES FOR PLANETARY ATMOSPHERE STUDIES N. Jacquinet-Husson, N.A. Scott, A. Ch é din, R. Armante Laboratoire de.
61th Ohio State University Symposium on Molecular Spectroscopy June 19–23, 2006 GLOBAL FREQUENCY AND INFRARED INTENSITY ANALYSIS OF 12 CH 4 LINES IN THE.
GLOBAL FIT ANALYSIS OF THE FOUR LOWEST VIBRATIONAL STATES OF ETHANE: THE 12  9 BAND L. Borvayeh and N. Moazzen-Ahmadi Department of Physics and Astronomy.
Valerie Klavans University of Maryland Conor Nixon University of Maryland, NASA GSFC Tilak Hewagama University of Maryland, NASA GSFC Donald E. Jennings.
Line list of HD 18 O rotation-vibration transitions for atmospheric applications Semen MIKHAILENKO, Olga NAUMENKO, and Sergei TASHKUN Laboratory of Theoretical.
The 1 and 6 bands of diiodo- methane CH 2 I 2 around 3.3  m studied by high-resolution FTS J. Orphal, N. Ibrahim Laboratoire Interuniversitaire des Systèmes.
A COMPREHENSIVE INTENSITY STUDY OF THE 4 TORSIONAL BAND OF ETHANE J. NOROOZ OLIAEE, N. Moazzen-Ahmadi Institute for Quantum Science and Technology Department.
IGRINS Science Workshop High Spectral Resolution Mid- Infrared Spectroscopy as a Probe of the Physical State of Planetary Atmospheres August 26,
DIODE-LASER AND FOURIER-TRANSFORM SPECTROSCOPY OF 14 NH 3 AND 15 NH 3 IN THE NEAR-INFRARED (1.5 µm) Nofal IBRAHIM, Pascale CHELIN, Johannes ORPHAL Laboratoire.
A new spectroscopic observatory in Créteil to measure atmospheric trace gases in solar occultation geometry C. Viatte, P. Chelin, M. Eremenko, C. Keim,
LINE BY LINE SPECTRAL PARAMETERS IN THE 4nu3 SPECTRAL REGION OF METHANE D. CHRIS BENNER, V. MALATHY DEVI, College of William and Mary J. J. O’BRIEN, S.
A. Barbe, M.-R. De Backer-Barilly, Vl.G. Tyuterev Analysis of CW-CRDS spectra of 16 O 3 : 6000 to 6200 cm -1 spectral range Groupe de Spectrométrie Moléculaire.
SELF- AND CO 2 -BROADENED LINE SHAPE PARAMETERS FOR THE 2 AND 3 BANDS OF HDO V. MALATHY DEVI, D. CHRIS BENNER, Department of Physics, College of William.
TEMPERATURE DEPENDENCES OF AIR-BROADENING AND SHIFT PARAMETERS IN THE ν 3 BAND OF OZONE M. A. H. SMITH NASA Langley Research Center, Hampton, VA
D. Zhao, K.D. Doney, H. Linnartz Sackler Laboratory for Astrophysics, Leiden Observatory, University of Leiden, the Netherlands T he 3 μm Infrared Spectra.
Infrared Spectra of N 2 -broadened 13 CH 4 at Titan Atmospheric Temperatures Mary Ann H. Smith 1, Keeyoon Sung 2, Linda R. Brown 2, Timothy J. Crawford.
Line Positions and Intensities for the ν 12 Band of 13 C 12 CH 6 V. Malathy Devi 1, D. Chris Benner 1, Keeyoon Sung 2, Timothy J. Crawford 2, Arlan W.
Xinchuan Huang, 1 David W. Schwenke, 2 Timothy J. Lee 2 1 SETI Institute, Mountain View, CA 94043, USA 2 NASA Ames Research Center, Moffett Field, CA 94035,
EXPERIMENTAL TRANSMISSION SPECTRA OF HOT AMMONIA IN THE INFRARED Monday, June 22 nd 2015 ISMS 70 th Meeting Champaign, Illinois EXPERIMENTAL TRANSMISSION.
An Experimental Approach to the Prediction of Complete Millimeter and Submillimeter Spectra at Astrophysical Temperatures Ivan Medvedev and Frank C. De.
HOT EMISSION SPECTRA FOR ASTRONOMICAL APPLICATIONS: CH 4 & NH 3 R. Hargreaves, L. Michaux, G. Li, C. Beale, M. Irfan and P. F. Bernath 1 Departments of.
EXPERIMENTAL LINE LISTS OF HOT METHANE Image credit: Mark Garlick MONDAY 22 nd JUNE 2015 ROBERT J. HARGREAVES MICHAEL DULICK PETER F.
MILLIMETRE-WAVE SPECTRUM OF ISOTOPOLOGUES OF ETHANOL FOR RADIO-ASTRONOMY Adam Walters, IRAP, Université de Toulouse, UPS-OMP-CNRS, France. Mirko Schäfer,
THE ANALYSIS OF 2ν3 BAND OF HTO
International Symposium on Molecular Spectroscopy
The Near-IR Spectrum of CH3D
Nofal IBRAHIM, Pascale CHELIN, Johannes ORPHAL
Andy Wong Robert J. Hargreaves Peter F. Bernath Michaël Rey
NH3 measurements in the far-IR
Experimental and Theoretical He-broadened Line Parameters of CO in the Fundamental Band Adriana Predoi-Cross1*, Hoimonti Rozario1, Koorosh Esteki1, Shamria.
A. M. Daly, B. J. Drouin, J. C. Pearson, K. Sung, L. R. Brown
By Narayan Adhikari Charles Woodman
EVALUATION OF GEISA CONTENTS
Line Strength Measurements in the n2 band of H218O
Presentation transcript:

Infrared spectroscopy of planetological molecules Isabelle Kleiner Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), Créteil, France

Summary Planetary observations Strategy and methods Molecular systems: NH 3, PH 3, CH 3 CN, 13 CH 3 D

GOOD SPATIAL RESOLUTION -Orbiting Spacecraft : GALILEO: observations of Venus (1990) : 3 CO  m mission to Jupiter (1996), Probe : first in-situ observations ! NIMS : Near Infrared Mapping Spectrometer Grating spectrometer,  m R =  m 1  m

Planetary observations -Ground based observatories: Canada-France-Hawaii Telescope (CFHT)

Cassini/Huygens Study of Saturnian system, launched 1997 Flew past Jupiter on december 2000 Go into orbit of saturn in july 2004 ESA entry probe Huygens in Titan atmosphere 14/01/2005 -Visible and Infrared Mapping Spectrometer (VIMS)  m; visible  m; IR -Composite Infrared Spectrometer (CIRS) cm -1 Interferometers, Resolution 0.5 cm -1

Line shape parameters (Voigt) self-broadening coefficients, pressure brodening, line mixing… Basic transition line parameters: ● Line position (or center frequency) ● Line intensity at 296 K ● Lower state energy (for temperature dependence) ● Vibrational - rotational quantum assignment WHAT DO WE NEED FOR ANALYZING PLANETARY SPECTRA?

How to model the IR spectra of NH 3,PH 3, C 3 H 8 in the gas phase? STRATEGY USED 1)First step : obtain experimental data for both line positions and line intensities of pure 14 NH 3, PH 3, … in the lab. 2) Analyze the data using an appropriate theoretical approach : taking into account :- inversion motion of NH 3, - different interactions between energy levels for NH 3 and PH 3.  “ best ” energy and intensity parameters obtained  complete line-by-line prediction with all information needed.

NH 3 and PH 3 : Giant Planets -Largest planetary bodies in solar system (99.56% of the planetary mass) « Gas giants »: H 2 and He : Jupiter Saturn « ice giants » : ices of water and CH 4 : Uranus Neptune Mean temperatures at 1 bar : Jupiter: 167 K; Saturn: 138 K (Uranus:79K,Neptune : 70K)

3 microns spectral range: Saturn and Jupiter have very different spectra NH 3 ice cloud PH 3 : NEED FOR SPECTROSCOPIC DATA !

Phosphine is a molecule of astrophysical and astronomical interest and has been observed in both the Jupiter and Saturn atmospheres Between K: 4PH 3 + 6H 2 O P 4 O 6 +12H 2 At the cold temperatures of upper troposphere should not be detectable BUT vertical mixing transports PH 3 faster than oxidation. PH 3 abundance gives information on vertical circulation PH 3 : A non-equilibrium species

Development of the theoretical model and programs for fitting the IR spectra of C 3v molecules l l l 3 2 K-type interaction Diag Coriolis Fermi Coriolis l- type interaction Diag Coriolis Fermi Coriolis Fermi 2 42 l- type interaction Diag Coriolis Fermi Coriolis Fermi 1 K-type Interaction Diag Coriolis 3 l- type interaction Diag

Recent works on PH 3 - A computed room temperature line list for phosphine, Clara Sousa-Silva, Sergei N. Yurchenko, Jonathan Tennyson, J. Mol. Spectrosc. 288 (2013) using the TROVE program Spectroscopic parameters of phosphine, PH3, in its ground vibrational state, Holger S.P. Muller, JQSRT, 130, 335 (2013) Global calculations using potential functions and effective Hamiltonian models for vibration-rotation spectroscopy, V.Tuyterev, M. Rey, in preparation Line Positions and Intensities of the Phosphine (PH3) Pentad near 4.5 microns V. Malathy Devia, Isabelle Kleiner, Robert L. Sams, Linda R. Brown, D. Chris Benner, Leigh N. Fletcher, J. Mol. Spectrosc.,298, 11–23 (2014) -Line shape parameters of PH3 transitions in the pentad near 4-5 micron; self-broadened widths, line mixing and speed dependence, V. M. Devi, D. C. Benner, I. Kleiner, R. L. Sams and L. N. Fletcher, J. Mol. Spectrosc. 302, 17–33 (2014)

-The band 3 2 : -Low resolution of line positions (Maki et al. JCP 1973) - The octad bands: New line positions and intensities measurements ( Butler, Brown, Kleiner et al., JMS 2006) The Global analysis of the Dyad, pentad and octad bands: (Nikitin, Brown, Kleiner et al., JMS 2009) The 2 2 / /2 4 / 1 / 3 pentad: -Frequencies: rms=0.009 cm -1 up to J=16 (Tarrago et al. JMS, 1992, Ulenikov and al. JMS, 2002) -Intensities: rms= 13% (Tarrago et al. JMS, 1992 NEW MEASUREMENTS NEEDED The 2 / 4 dyad: -Frequencies: rms=0.0004cm -1 up to J=22 (Fusina and al, J.Mol.Struc.,2000 ) -Intensities: rms=2% (Brown, Kleiner and al., JMS, 2001) -Linewidth: self Broadening coefficients (J. Salem and al, JMS, 2004)