A Micromegas TPC for the ILC. 2 Introduction: Micromegas & TPC I. Micromegas ILC-TPC ILC & LP-TPC Beam test with Micromegas modules Test bench Ion backflow.

Slides:



Advertisements
Similar presentations
Beam tests of Fast Neutron Imaging in China L. An 2, D. Attié 1, Y. Chen 2, P. Colas 1, M. Riallot 1, H. Shen 2, W. Wang 1,2, X. Wang 2, C. Zhang 2, X.
Advertisements

Amsterdam, April 2,2003P. Colas - Micromegas TPC1 Micromegas TPC: New Results and Prospects New tests in magnetic fieldNew tests in magnetic field FeedbackFeedback.
Bulk Micromegas Our Micromegas detectors are fabricated using the Bulk technology The fabrication consists in the lamination of a steel woven mesh and.
Beam test of Linear Collider TPC Micromegas module with fully integrated electronics * D. Attié, A. Bellerive, P. Colas, E. Delagnes, M. Dixit, I. Giamatoris,
Xiaodong Wang ( 王晓冬 ) School of Nuclear Science and Technology Lanzhou University, Lanzhou, China MPGD activities at Lanzhou University July 5, 2013.
Astrophysics Detector Workshop – Nice – November 18 th, David Attié — on behalf of the LC-TPC Collaboration — Micromegas TPC Large.
Carleton University A. Bellerive, K. Boudjemline, R. Carnegie, A. Kochermin, J. Miyamoto, E. Neuheimer, E. Rollin & K. Sachs University of Montreal J.-P.
IHEP, Bejing 9th ACFA ILC Physics and Detector Workshop & ILC GDE Meeting The preliminary results of MPGD-based TPC performance at KEK beam.
P. Colas on behalf of LCTPC. 2 detector concepts : ILD and SiD SiD: all-silicon ILD: TPC for the central tracking 15/05/2012P. Colas - LCTPC2 Both based.
P. Colas on behalf of LCTPC Frontier detectors for frontier physics 12 th Pisa meeting on advanced detectors Isola d’Elba, May 2012.
ILD Large Prototype TPC tests with Micromegas D. Attié, A. Bellerive, P. Colas, E. Delagnes, M. Dixit, I. Giamatoris, A. Giganon J.-P. Martin, M. Riallot,
Large Area Endplate Prototype for the LC TPC 1 D. Attié, P. Baron, D. Calvet, P. Colas, C. Coquelet, E. Delagnes, M. Dixit, A. Le Coguie, R. Joannes, S.
A TPC for the Linear Collider P. Colas, on behalf of the LCTPC collaboration Instrumentation for Colliding Beam Physics 2014 Novosibirsk, Russia.
Current TPC electronics P. Colas Krakow, IFJ-PAN, ILD Pre-meeting September 18, 2014.
Stanford, Mar 21, 2005P. Colas - Micromegas TPC1 Results from a Micromegas TPC Cosmic Ray Test Berkeley-Orsay-Saclay Progress Report Reminder: the Berkeley-Orsay-
Micromegas modules Towards the 7 module test. Micromegas panels Phase I: ‘Large Prototype’ Micromegas modules were built and tested in beam ( ):
Nov. 11, 2009 WP meeting 94 1 D. Attié SINP, January 22 th, 2010 Beam tests of a Micromegas Large TPC Prototype.
Astrophysics Detector Workshop – Nice – November 18 th, D. Attié, P. Colas, E. Delagnes, M. Dixit, M. Riallot, Y.-H. Shin, S.
EPS-HEP 2015, Vienna. 1 Test of MPGD modules with a large prototype Time Projection Chamber Deb Sankar Bhattacharya On behalf of.
FIRST TEST RESULTS FROM A MICROMEGAS LARGE TPC PROTOTYPE P. Colas (CEA Saclay), on behalf of the LC-TPC collaboration Micromegas with resistive anode:
Micromegas TPC Results from beam tests 7-module design ILD TPC mechanics and integration D. Attié, M. Carty, P. Colas, G. De Lentdecker, M. Dixit, M. Riallot,
Beijing, Feb.6, 2007 P. Colas - Micromegas TPC 1 Micromegas TPC studies in a 5 Tesla magnetic field with a resistive readout D. Attié, A. Bellerive, K.
Micromegas TPC Beam Test Result H.Kuroiwa (Hiroshima Univ.) Collaboration with Saclay, Orsay, Carlton, MPI, DESY, MSU, KEK, Tsukuba U, TUAT, Kogakuin U,
June 22, 2009 P. Colas - Analysis meeting 1 D. Attié, P. Colas, M. Dixit, Yun-Ha Shin (Carleton and Saclay) Analysis of Micromegas Large Prototype data.
TPC electronics for ILD P. Colas Krakow, IFJ-PAN, ILD Pre-meeting September 24, 2013.
29/09/2010 1Wenxin.Wang_EUDET annual workshop D. Attié, P. Colas, M. Dixit, M. Riallot, YunHa Shin, S. Turnbull, W. Wang and all the LC-TPC collaboration.
IHEP, Beijing 9th ACFA ILC Physics and Detector Workshop & ILC GDE Meeting The preliminary results of MPGD-based TPC performance at KEK beam.
A TPC for ILC CEA/Irfu, Apero, D S Bhattacharya, 19th June Deb Sankar Bhattacharya D.Attie, P.Colas, S. Ganjour,
A New GEM Module for a Large Prototype TPC: Status and Plans By Stefano Caiazza On behalf of the FLC DESY.
TPC Integration P. Colas (thanks to D. Attié, M. Carty, M. Riallot, LC-TPC…) TPC layout(s) Services Power dissipation Endplate thickness and cost Mechanical.
Snowmass, August, 2005P. Colas - InGrid1 M. Chefdeville a, P. Colas b, Y. Giomataris b, H. van der Graaf a, E.H.M.Heijne c, S.van der Putten a, C. Salm.
Towards a 7-module Micromegas Large TPC prototype 1 D. Attié, P. Baron, D. Calvet, P. Colas, C. Coquelet, E. Delagnes, M. Dixit, A. Le Coguie, R. Joannes,
R&D by LCTPC collaboration Last week: DESY PRC review: Status report:
Wenxin Wang 105/04/2013. L: 4.7m  : 3.6m Design for an ILD TPC in progress: Each endplate: 80 modules with 8000 pads Spatial Resolution (in a B=3.5T.
P. Colas on behalf of LCTPC. Strategy for Micromegas The Micromegas option is studied within the same (EUDET) facility as the other options (see R. Diener’s.
A. SarratTPC jamboree, Aachen, 14/03/07 1 Full Monte Carlo of a TPC equipped with Micromegas Antony Sarrat CEA Saclay, Dapnia Motivation Simulation content.
January 10, 2008MiPGD TPC resolution and gas1 Micromegas TPC addendum on measurements P. Colas, Saclay Lectures at the TPC school, Tsinghua University,
Wenxin Wang On behalf of LCTPC 01/11/2012W.Wang_ IEEE Conference Nuclear Science Symposium, Medical Imaging Conference & workshop on Room-Temperature.
Tracking in a TPC D. Karlen / U. Victoria & TRIUMF for the LCTPC collaboration.
Six modules Micromegas TPC beam test & Test bench 12/4/2012W.Wang_RD51 mini week1 D. Attié, P. Colas, M. Dixit, P. Hayman, W. Wang.
On behalf of the LCTPC collaboration VCI13, February 12th, 2013 Large Prototype TPC using Micro-Pattern Gaseous Detectors  David Attié 
Astrophysics Detector Workshop – Nice – November 18 th, David Attié — on behalf of the LC-TPC Collaboration — Beam test of the.
A. SarratILC TPC meeting, DESY, 15/02/06 Simulation Of a TPC For T2K Near Detector Using Geant 4 Antony Sarrat CEA Saclay, Dapnia.
Paul Colas, CEA/Irfu Saclay. E Ionizing particle electrons are separated from ions The electrons diffuse and drift along the an E field Localisation in.
D. Attié, P. Colas, K. Fujii,T. Matsuda, M. Riallot, A. Sugiyama, W. Wang Thanks to M. Dixit, Yun-Ha Shin, S. Turnbull,Yulan Li Construction and tests.
P. Colas D. Attié, P. Colas, I. Giomataris, W. Wang (Irfu) M. Dixit, N. Shiell, P. Hayman (Carleton U.) G. De Lentdecker (Brussels)
Wenxin Wang (D. Attié, P. Colas, E. Delagnes, Yuanning Gao, Bitao Hu, Bo Li, Yulan Li, M. Riallot, Xiaodong Zhang)
On behalf of the LCTPC collaboration -Uwe Renz- University of Freiburg Albert-Ludwigs- University Freiburg Physics Department.
Vienna Conference on Instrumentation – February 27, D. Attié, A. Bellerive, K. Boudjemline, P. Colas, M. Dixit, A. Giganon,
NSCL Proton Detector David Perez Loureiro September 14 th 2015.
TPC for ILC and application to Fast Neutron Imaging L. An 2, D. Attié 1, Y. Chen 2, P. Colas 1, M. Riallot 1, H. Shen 2, W. Wang 1,2, X. Wang 2, C. Zhang.
Beam test Analysis Micromegas TPC by Wenxin Wang.
GEM TPC Resolution from Charge Dispersion*
Carleton University & TRIUMF
Large Prototype TPC using Micro-Pattern Gaseous Detectors
Large TPCs for HEP ILC-TPC & Fast Neutron detector
Large Area Endplate Prototype for the LC TPC
P. Colas for the LC TPC collaboration
T2K TPC Micromegas Prototype: Test Results on Harp setup
Numerical simulations on single mask conical GEMs
A TPC for the Linear Collider
Micromegas module for ILC-TPC
TPC electronics for ILD
Recents Analysis Results From Micromegas TPC
TPC Paul Colas Technical meeting, Lyon.
Dan Burke1, P. Colas2, M. Dixit1, I. Giomataris2, V. Lepeltier3, A
a TPC with resistive Micromegas
Pre-installation Tests of the LHCb Muon Chambers
D. Attié, P. Colas, K. Fujii,T. Matsuda,
Large TPCs for HEP RD51 P. Colas Lanzhou U., Saclay, Tsinghua U.
Presentation transcript:

A Micromegas TPC for the ILC

2 Introduction: Micromegas & TPC I. Micromegas ILC-TPC ILC & LP-TPC Beam test with Micromegas modules Test bench Ion backflow measurement II.Other Micromegas TPC application I maging by neutrons Conclusion Introduction: Micromegas & TPC I. Micromegas ILC-TPC ILC & LP-TPC Beam test with Micromegas modules Test bench Ion backflow measurement II.Other Micromegas TPC application I maging by neutrons Conclusion Outline

3 PCB Invented by Y. Giomataris et al, (CEA/Saclay) 1996 MICROMEsh GAseous Structure Cathode Mesh Drift gap ~ 0.3 kV/cm Amplification gap ~ µm ~ 50 kV/cm E amplif / E drift ~ 200 Introduction Micromegas Characteristics: Spatial resolution (< 100μm ) Small gap: fast rise time (< 1 ns) and fast collection of ions (< 100 ns) High gain (up to 10 5 or more) Low ion back-flow into drift space

4 E Electrons diffuse and drift due to the E-field Localization in time and position B A magnetic field reduces electrons diffusion Micromegas TPC : the position- sensitive electron collection system is made by Micromegas t Ionization energy loss(dE/dx) 3 D track points reconstruction x y ( Micromegas TPC ) Introduction TPC: Time Projection Chamber

5 Introduction: Micromegas & TPC I. Micromegas ILC-TPC ILC & LP-TPC Beam test with Micromegas modules Test bench Ion backflow measurement II.Other Micromegas TPC application I maging by neutrons Conclusion Outline

6 Higgs boson & ILC Higgs 125 GeV has been discovered at LHC It can be studied in detail at ILC where it is produced by Higgs-strahlung. This allows an unbiased selection by Z recoils, to measure mass and all possible decay modes. This sets the goal resolution of 100  m per pad row. I. Micromegas ILC-TPC (International Linear Collider)

7 I. Micromegas ILC-TPC Many interesting processes have many jets and many charged tracks. TPC provides 3 D continuous tracking with low material budget. This is important for pattern recognition. Top quark & ILC

8 L: 4.7 m  : 3.6 m Design for an ILD TPC in progress: ‐Each endplate: 80 modules with 8000 pads I. Micromegas ILC-TPC 31 km ILD ILD-TPC for ILC Spatial Resolution (in a B= 3.5 T magnetic field): ‐ δ(x) ~ 100 μm for the full 2.3 m drift Low material budget in front of the calorimeters: ‐Barrel: 5 % X0 ‐Endplates: ~ 25 % X0

9 Magnet up to 1.2 T Field cage: 61 cm length and 72 cm diameter 7 interchangeable modules with keystone shape Gaseous mixture: T 2 K gas (Ar:CF 4 :iC 4 H 10 = 95 %: 3 %: 2 %) EUDET setup at DESY I. Micromegas ILC-TPC Large Prototype-TPC (LP-TPC)

10 ReadoutPad Size ElectronicsGroups MPGDs Micromegas (Resistive anode) (~ 3 × 7 mm 2 Pad) AFTERSaclay-Carleton ReadoutPad Size ElectronicsGroups MPGDs Micromegas (Resistive anode) (~ 3 × 7 mm 2 Pad) AFTERSaclay-Carleton Double GEMs (Laser-etched) (~ 1 × 6 mm 2 Pad) ALTRO Asia Triple GEMs (wet- etched) Desy Several Micro-Pattern Gaseous Detectors types of readout modules are studied Micromegas (test with 7 modules) GEM (test with 3 modules) I. Micromegas ILC-TPC MPGD: Micromegas & GEM

11 w : pad width  0 : resolution at Z= 0 without diffusion Charge dispersion technique with a resistive anode pads mesh E B Amplification gap: ~100  m resistive foil: ~75  m insulator: ~100  m Micromegas with Resistive Anode Pad width limits MPGD TPC resolution Direct signal readout technique pads mesh E B Amplification gap: ~100  m I. Micromegas ILC-TPC Resistive foil also provides anti-spark protection Equation for surface charge density function on the 2 D continuous RC network:

12 Micromegas module Module size: 22 cm × 17 cm 24 rows × 72 columns Readout: 1726 Pads Pad size: ~ 3 mm × 7 mm I. Micromegas ILC-TPC

~2011: Test with one module at the center of LP-TPC 2012~2013: Test with multi-modules at the endplate of LP-TPC I. Micromegas ILC-TPC

14 (2008~2011) At the center of LP-TPC I. Micromegas ILC-TPC Tests with one single module

15 Resistive ink ~ 3 MΩ/ □ Resistive Kapton ~ 5 MΩ/ □ Standard (no resistive layer) Resistive Kapton ~ 3 MΩ/ □ Module 1 Module 2 Module 3 Module 4 & Module 5 I. Micromegas ILC-TPC Micromegas modules

16 Z= 5 cm Mean Residual vs Row Number Z-independent distortions Distortions up to 50 microns for resistive ink (blue points) Rms 7 microns for CLK film (red points) Z= 50 cm Z= 35 cm I. Micromegas ILC-TPC Row number Uniformity Resistive CLK Module Resistive ink Module

17 Spatial resolution Module 5 Module 4 I. Micromegas ILC-TPC (B = 0 T)

18 (B = 1 T) Module_INKModule_CLK C d = 94.2 µm/√cm (Magboltz MC) I. Micromegas ILC-TPC Spatial resolution

19 Spatial resolution I. Micromegas ILC-TPC

20 (2012~2013) Fully cover the endplate of LP-TPC I. Micromegas ILC-TPC Using a quasi-industrial production chain Tests with multi-modules

21 14 cm 25 cm Front-End Card (FEC) 12.5 cm 2.8 cm Integrated electronics  Remove packaging and protection diodes  Wire-bond AFTER chips  Use two 300 -point connectors 0.78 cm 0.74 cm 3.5 cm AFTER Chip The resistive foil protects against sparks 4.5 cm I. Micromegas ILC-TPC

22 Material budget of a module M (g) Radiation Length (g/cm 2 ) Module frame + Back-frame + Radiator (× 6 ) Al Detector + FEC PCB (× 6 ) + FEM Si ‘ 300 -point’ connectors Carbon screws for FEC + Stud screws+ Fe Air cooling brass Plexiglas Average of a module Low material budget requirement for ILD-TPC: ‐Endplates: ~ 25 % X 0 (X 0 : radiation length in cm) I. Micromegas ILC-TPC Front-End Card (FEC) Pads PCB + Micromegas Front-End Mezzanine (FEM) Cooling system ‘ 300 -point’ connectors

23 Test bench A 55 Fe source is put in an aluminum collimation tube and fixed on a set of two mechanical arms (X-Y). I. Micromegas ILC-TPC

24 Test bench Test with collimator Test without collimator to check the map of missing pads I. Micromegas ILC-TPC

25 Modules comparison At V mesh = 380 V, Energy resolution ~ 12 % r.m.s I. Micromegas ILC-TPC

26 Modules comparison At V mesh = 380 V, average gain ~ 2630, gain spread ~ 15 % I. Micromegas ILC-TPC

27 Gain Study using beam events I. Micromegas ILC-TPC 2500 at V mesh = 380 V ( 2700 at V mesh = 380 V From test bench) Charge per row For 6.84 mm pitch & 5 GeV e- N electron (MPV) expected = 45 (from HEED simulation)

28 Beam events display 2 D or 3 D display from ILC software Online monitor Offline monitor I. Micromegas ILC-TPC

29 Analysis Framework: MarlinTPC MarlinTPC Marlin based simulation, digitization, reconstruction and analysis code for the TPC. KalDet &KalTest: (installed in Marlin) –A ROOT-based Kalman Filter Package. – Used to reconstruct tracks. I. Micromegas ILC-TPC

30 Spatial resolution Event selection  only single track event I. Micromegas ILC-TPC

31 Spatial resolution Hit selection Fit track with all rows I. Micromegas ILC-TPC

32 Profile histogram of the residual with the track in one row before bias correction Profile histogram of the residual with the track in one row after bias correction I. Micromegas ILC-TPC Spatial resolution Pad size (mm)

33 Distribution of the residuals (z = 15 cm) I. Micromegas ILC-TPC Spatial resolution

34 B= 1 T C d = 94.2 µm/√cm (Magboltz MC) I. Micromegas ILC-TPC Spatial resolution 24 rows of a module

35 Extrapolation of the spatial resolution Extrapolate to 2.3 m & B= 3.5 T B= 0 T B= 1 T B= 3.5 T I. Micromegas ILC-TPC --- Micromegas with 3 mm width pads --- GEM with 1 mm width pads B= 1 T

36 Distortions B= 1 T B= 0 T After alignment B= 0 T I. Micromegas ILC-TPC

37 Field distortions Distortions in B= 0 T or B= 1 T at different drift distances z ( 15 cm~ 50 cm) B= 1 T I. Micromegas ILC-TPC B= 0 T

38 Ion backflow measurement I. Micromegas ILC-TPC

39 Ion backflow measurement I d : Current on the cathode I a : Current on the mesh I p : Current on the cathode without amplification applied in the amplification gap I. Micromegas ILC-TPC A 10 cm × 10 cm T 2 K prototype ‐Bulk Micromegas ‐T 2 K gaseous mixture Ar/CF 4 /Isobutane ( 95:3:2 )

40 Gain Gain as a function of V mesh (E drift = 0.2 kV/cm at atmospheric pressure) A measured 55 Fe spectrum (at V mesh = 350 V and V drift = 400 V) I. Micromegas ILC-TPC

41 Electron transparency I. Micromegas ILC-TPC

42 Ion backflow For our Micromegas modules tested in LP-TPC, the field ratio is set around 200. The ion backflow will be of the order of  6× I. Micromegas ILC-TPC

43 Introduction: Micromegas & TPC I. Micromegas ILC-TPC ILC & LP-TPC Beam test with Micromegas modules Test bench Ion backflow measurement II.Other Micromegas TPC application I maging by neutrons Conclusion Outline

44 Micromegas TPC for neutron imaging Gas: Argon + 5 % Isobutane 128 µm HV mesh E amp ~ 23 kV/cm 15 mm HV drift E drift ~ 160 V/cm PE Detector layout: 1728 ( 48 × 36 ) pads of 1.75 mm× 1.50 mm + bulk Micromegas Elastic scattering on hydrogen n  p+ masks (PE) PCB Micromegas n p Aluminized polyethylene 1 mm between 2 layers ( 0.5 µm) of Al 57.4 mm 88.6 mm Cosmics (x, y, t) II. Other Micromegas TPC application: neutron imaging

45 Simulation for converter efficiency  Neutron  proton recoiling efficiency in a polyethylene [C 2 H 4 ] n layer coming from 241 Am- 9 Be source Incident neutron spectrum According to ISO 8529 (*) * INTERNATIONAL STANDARD ISO Reference neutron radiations – Part 1 : Characteristic and methods of productions. International Standard ISO (2001). II. Other Micromegas TPC application: neutron imaging

46 Reconstruct track Garfield Avalanches Drift lines from primary ionization e- Proton track \\ II. Other Micromegas TPC application: neutron imaging

47 Test with a 241 Am- 9 Be neutron source Letters “CEA” or “LZU” 8 cm thickness mm width 2.5 mm 3 mm 3.5 mm 4 mm II. Other Micromegas TPC application: neutron imaging

48 Neutron imaging Integrating the ADC of all events in one pad. Reconstructed using the time information. II. Other Micromegas TPC application: neutron imaging

49 Introduction: Micromegas & TPC I. Micromegas ILC-TPC ILC & LP-TPC Beam test with Micromegas modules Test bench Ion backflow measurement II.Other Micromegas TPC application I maging by neutrons Conclusion Outline

50 A lot of experience has been gained in building and operating Micromegas TPC panels. The characteristics of the Micromegas modules, such as the uniformity, energy resolution, stability have been studied in detail. 7 modules have been successfully tested with full integration of the electronics at the same time. Thanks to the resistive technology, the measured resolution is about 60 microns at zero drift distance with 3 mm wide pads. This meets ILC needs. Distortions are observed. Their detailed study will allow to correct them and improve the design to minimize them. Conclusion