Date of download: 9/18/2016 Copyright © ASME. All rights reserved. From: Buoyancy Driven Flow in Saturated Porous Media J. Heat Transfer. 2006;129(6):727-734.

Slides:



Advertisements
Similar presentations
Date of download: 5/28/2016 Copyright © ASME. All rights reserved. From: Forced Convection Heat Transfer in Spray Formed Copper and Nickel Foam Heat Exchanger.
Advertisements

Date of download: 6/22/2016 Copyright © ASME. All rights reserved. From: Turbulent Heat Transfer Over a Moving Surface Due to Impinging Slot Jets J. Heat.
Date of download: 6/26/2016 Copyright © ASME. All rights reserved. From: Thermosolutal Natural Convection in Partially Porous Domains J. Heat Transfer.
Date of download: 6/27/2016 Copyright © ASME. All rights reserved. From: Specific Heat Measurement of Three Nanofluids and Development of New Correlations.
Date of download: 6/27/2016 Copyright © ASME. All rights reserved. From: Numerical Modeling of Regenerative Cooling System for Large Expansion Ratio Rocket.
Date of download: 7/6/2016 Copyright © ASME. All rights reserved. From: The Scattering of Acoustic Wave by a Chain of Elastic Spheres in Liquid J. Vib.
Date of download: 7/6/2016 Copyright © ASME. All rights reserved. From: Compounded Heat Transfer Enhancement in Enclosure Natural Convection by Changing.
Date of download: 7/7/2016 Copyright © ASME. All rights reserved. From: Energy Conservative Dissipative Particle Dynamics Simulation of Natural Convection.
Date of download: 7/7/2016 Copyright © ASME. All rights reserved. Cost-Effective Reliability Analysis and Testing of Medical Devices 1 J. Med. Devices.
Date of download: 7/9/2016 Copyright © ASME. All rights reserved. From: Experimental Investigation of Boiler Pressure Behavior in Closed-Open-Closed System.
Date of download: 7/16/2016 Copyright © ASME. All rights reserved. From: Investigation of Cooling Process of a High-Temperature Hollow Cylinder in Moving.
Date of download: 9/17/2016 Copyright © ASME. All rights reserved. From: Heat Conduction Effect on Oscillating Heat Pipe Operation J. Thermal Sci. Eng.
Date of download: 9/17/2016 Copyright © ASME. All rights reserved. From: Predicting the Thermal Conductivity of Foam Neoprene at Elevated Ambient Pressure.
Date of download: 9/18/2016 Copyright © ASME. All rights reserved. From: Oscillating Heat Transfer Correlations for Spiral-Coil Thermoacoustic Heat Exchangers.
Date of download: 11/12/2016 Copyright © ASME. All rights reserved.
Date of download: 9/27/2017 Copyright © ASME. All rights reserved.
From: Thermal-Hydraulic Performance of MEMS-based Pin Fin Heat Sink
From: Analysis of a Porous Elastic Sheet Damper With a Magnetic Fluid
Date of download: 10/2/2017 Copyright © ASME. All rights reserved.
Date of download: 10/3/2017 Copyright © ASME. All rights reserved.
Date of download: 10/7/2017 Copyright © ASME. All rights reserved.
Date of download: 10/7/2017 Copyright © ASME. All rights reserved.
Date of download: 10/7/2017 Copyright © ASME. All rights reserved.
From: Thermal Convection in Porous Media at High Rayleigh Numbers
Date of download: 10/10/2017 Copyright © ASME. All rights reserved.
Date of download: 10/10/2017 Copyright © ASME. All rights reserved.
Date of download: 10/10/2017 Copyright © ASME. All rights reserved.
Date of download: 10/13/2017 Copyright © ASME. All rights reserved.
Date of download: 10/14/2017 Copyright © ASME. All rights reserved.
Date of download: 10/16/2017 Copyright © ASME. All rights reserved.
Date of download: 10/16/2017 Copyright © ASME. All rights reserved.
Date of download: 10/18/2017 Copyright © ASME. All rights reserved.
Date of download: 10/19/2017 Copyright © ASME. All rights reserved.
Date of download: 10/21/2017 Copyright © ASME. All rights reserved.
Date of download: 10/22/2017 Copyright © ASME. All rights reserved.
From: A Transient Immersed Coil Heat Exchanger Model
Date of download: 10/25/2017 Copyright © ASME. All rights reserved.
Date of download: 10/26/2017 Copyright © ASME. All rights reserved.
Date of download: 10/26/2017 Copyright © ASME. All rights reserved.
Date of download: 10/29/2017 Copyright © ASME. All rights reserved.
Date of download: 10/29/2017 Copyright © ASME. All rights reserved.
From: Heat Exchanger Efficiency
Date of download: 11/2/2017 Copyright © ASME. All rights reserved.
Date of download: 11/5/2017 Copyright © ASME. All rights reserved.
Date of download: 11/6/2017 Copyright © ASME. All rights reserved.
Date of download: 11/7/2017 Copyright © ASME. All rights reserved.
From: Heat Transfer During Compression and Expansion of Gas
Date of download: 11/10/2017 Copyright © ASME. All rights reserved.
Date of download: 11/11/2017 Copyright © ASME. All rights reserved.
Date of download: 11/12/2017 Copyright © ASME. All rights reserved.
Date of download: 11/15/2017 Copyright © ASME. All rights reserved.
Date of download: 12/17/2017 Copyright © ASME. All rights reserved.
Date of download: 12/17/2017 Copyright © ASME. All rights reserved.
Date of download: 12/18/2017 Copyright © ASME. All rights reserved.
Date of download: 12/19/2017 Copyright © ASME. All rights reserved.
Date of download: 12/21/2017 Copyright © ASME. All rights reserved.
Date of download: 12/21/2017 Copyright © ASME. All rights reserved.
Date of download: 12/22/2017 Copyright © ASME. All rights reserved.
Date of download: 12/24/2017 Copyright © ASME. All rights reserved.
From: Vapor Chamber Acting as a Heat Spreader for Power Module Cooling
Date of download: 12/27/2017 Copyright © ASME. All rights reserved.
Date of download: 12/27/2017 Copyright © ASME. All rights reserved.
Date of download: 12/29/2017 Copyright © ASME. All rights reserved.
Date of download: 12/29/2017 Copyright © ASME. All rights reserved.
Date of download: 12/31/2017 Copyright © ASME. All rights reserved.
Date of download: 12/31/2017 Copyright © ASME. All rights reserved.
Date of download: 1/2/2018 Copyright © ASME. All rights reserved.
Date of download: 1/2/2018 Copyright © ASME. All rights reserved.
Date of download: 1/7/2018 Copyright © ASME. All rights reserved.
Date of download: 1/16/2018 Copyright © ASME. All rights reserved.
Presentation transcript:

Date of download: 9/18/2016 Copyright © ASME. All rights reserved. From: Buoyancy Driven Flow in Saturated Porous Media J. Heat Transfer. 2006;129(6): doi: / Experimental results for free convection between horizontal plates in a saturated porous medium. Here Nu, Ram, and Da are scaled to the layer thickness, L. Figure Legend:

Date of download: 9/18/2016 Copyright © ASME. All rights reserved. From: Buoyancy Driven Flow in Saturated Porous Media J. Heat Transfer. 2006;129(6): doi: / Geometry used in the scale analysis of Bejan Figure Legend:

Date of download: 9/18/2016 Copyright © ASME. All rights reserved. From: Buoyancy Driven Flow in Saturated Porous Media J. Heat Transfer. 2006;129(6): doi: / Steady state heat transfer data in water with regression equation, Eq. Figure Legend:

Date of download: 9/18/2016 Copyright © ASME. All rights reserved. From: Buoyancy Driven Flow in Saturated Porous Media J. Heat Transfer. 2006;129(6): doi: / Nusselt numbers of 6 ‐ mm DIA glass particles in water compared with results of Bejan and Cheng and Minkowycz. The two lines for Bejan’s prediction are extreme values based on the aspect ratio pertaining to the present study. Figure Legend:

Date of download: 9/18/2016 Copyright © ASME. All rights reserved. From: Buoyancy Driven Flow in Saturated Porous Media J. Heat Transfer. 2006;129(6): doi: / Steady state temperature profiles as function of longitudinal position with power-law profiles suggested by Cheng and Minkowycz superposed Figure Legend:

Date of download: 9/18/2016 Copyright © ASME. All rights reserved. From: Buoyancy Driven Flow in Saturated Porous Media J. Heat Transfer. 2006;129(6): doi: / Nusselt number for 1.5mm DIA glass particles in water with predictions Figure Legend:

Date of download: 9/18/2016 Copyright © ASME. All rights reserved. From: Buoyancy Driven Flow in Saturated Porous Media J. Heat Transfer. 2006;129(6): doi: / Nusselt number of 14mm DIA steel particles in water compared to predictions. Figure Legend:

Date of download: 9/18/2016 Copyright © ASME. All rights reserved. From: Buoyancy Driven Flow in Saturated Porous Media J. Heat Transfer. 2006;129(6): doi: / Nusselt number of 6mm DIA steel particles in water compared to predictions Figure Legend:

Date of download: 9/18/2016 Copyright © ASME. All rights reserved. From: Buoyancy Driven Flow in Saturated Porous Media J. Heat Transfer. 2006;129(6): doi: / Nusselt numbers for all steady state data by particle type compared to predictions Figure Legend:

Date of download: 9/18/2016 Copyright © ASME. All rights reserved. From: Buoyancy Driven Flow in Saturated Porous Media J. Heat Transfer. 2006;129(6): doi: / Nusselt number passed on Rayleigh number for the interstitial fluid (water) with the measured correlation for water, Eq. Figure Legend: