1 Jean Daunizeau Wellcome Trust Centre for Neuroimaging 23 / 10 / 2009 EEG-MEG source reconstruction.

Slides:



Advertisements
Similar presentations
J. Daunizeau Institute of Empirical Research in Economics, Zurich, Switzerland Brain and Spine Institute, Paris, France Bayesian inference.
Advertisements

EEG/MEG source reconstruction in SPM5
Bayesian inference Lee Harrison York Neuroimaging Centre 01 / 05 / 2009.
EEG-MEG source reconstruction
Bayesian inference Jean Daunizeau Wellcome Trust Centre for Neuroimaging 16 / 05 / 2008.
Dynamic causal Modelling for evoked responses Stefan Kiebel Wellcome Trust Centre for Neuroimaging UCL.
EEG/MEG Source Localisation
STATISTICAL ANALYSIS AND SOURCE LOCALISATION
SPM Software & Resources Wellcome Trust Centre for Neuroimaging University College London SPM Course London, May 2011.
SPM Software & Resources Wellcome Trust Centre for Neuroimaging University College London SPM Course London, October 2008.
Bayesian models for fMRI data
Dynamic Causal Modelling for ERP/ERFs Valentina Doria Georg Kaegi Methods for Dummies 19/03/2008.
MEG/EEG Inverse problem and solutions In a Bayesian Framework EEG/MEG SPM course, Bruxelles, 2011 Jérémie Mattout Lyon Neuroscience Research Centre ? ?
The M/EEG inverse problem
J. Daunizeau Wellcome Trust Centre for Neuroimaging, London, UK Institute of Empirical Research in Economics, Zurich, Switzerland Bayesian inference.
J. Daunizeau Motivation, Brain and Behaviour group, ICM, Paris, France Wellcome Trust Centre for Neuroimaging, London, UK Dynamic Causal Modelling for.
The M/EEG inverse problem and solutions Gareth R. Barnes.
General Linear Model & Classical Inference Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM M/EEGCourse London, May.
Source localization for EEG and MEG Methods for Dummies 2006 FIL Bahador Bahrami.
SENSOR LEVEL ANALYSIS AND SOURCE LOCALISATION in M/EEG METHODS FOR DUMMIES Mrudul Bhatt & Wenjun Bai.
Generative Models of M/EEG: Group inversion and MEG+EEG+fMRI multimodal integration Rik Henson (with much input from Karl Friston)
DCM for ERPs/EFPs Clare Palmer & Elina Jacobs Expert: Dimitris Pinotsis.
EEG/MEG Source Localisation SPM Course – Wellcome Trust Centre for Neuroimaging – Oct ? ? Jérémie Mattout, Christophe Phillips Jean Daunizeau Guillaume.
EEG/MEG source reconstruction
J. Daunizeau Wellcome Trust Centre for Neuroimaging, London, UK UZH – Foundations of Human Social Behaviour, Zurich, Switzerland Dynamic Causal Modelling:
Wellcome Dept. of Imaging Neuroscience University College London
Dynamic Causal Modelling of Evoked Responses in EEG/MEG Wellcome Dept. of Imaging Neuroscience University College London Stefan Kiebel.
Dynamic causal modelling of electromagnetic responses Karl Friston - Wellcome Trust Centre for Neuroimaging, Institute of Neurology, UCL In recent years,
Dynamic Causal Modelling for EEG and MEG
EEG/MEG source reconstruction
MfD EEG/MEG Source Localization 4 th Feb 2009 Maro Machizawa Himn Sabir Expert: Vladimir Litvak.
Dynamic Causal Model for evoked responses in MEG/EEG Rosalyn Moran.
Bayesian inference Lee Harrison York Neuroimaging Centre 23 / 10 / 2009.
M/EEG: Statistical analysis and source localisation Expert: Vladimir Litvak Mathilde De Kerangal & Anne Löffler Methods for Dummies, March 2, 2016.
MEG Analysis in SPM Rik Henson (MRC CBU, Cambridge) Jeremie Mattout, Christophe Phillips, Stefan Kiebel, Olivier David, Vladimir Litvak,... & Karl Friston.
Bayesian Inference in SPM2 Will Penny K. Friston, J. Ashburner, J.-B. Poline, R. Henson, S. Kiebel, D. Glaser Wellcome Department of Imaging Neuroscience,
DCM for evoked responses Ryszard Auksztulewicz SPM for M/EEG course, 2015.
The General Linear Model Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM fMRI Course London, October 2012.
Bayesian Model Selection and Averaging SPM for MEG/EEG course Peter Zeidman 17 th May 2016, 16:15-17:00.
Group Analyses Guillaume Flandin SPM Course London, October 2016
Dynamic Causal Modeling of Endogenous Fluctuations
The general linear model and Statistical Parametric Mapping
The General Linear Model
SPM for M/EEG - introduction
Wellcome Trust Centre for Neuroimaging University College London
M/EEG Analysis in SPM Rik Henson (MRC CBU, Cambridge)
Keith Worsley Keith Worsley
The General Linear Model (GLM)
Generative Models of M/EEG:
Dynamic Causal Model for evoked responses in M/EEG Rosalyn Moran.
The General Linear Model
Linear Hierarchical Modelling
Statistical Parametric Mapping
SPM2: Modelling and Inference
Dynamic Causal Modelling for M/EEG
Dynamic Causal Modelling
Guillaume Flandin Wellcome Trust Centre for Neuroimaging
Bayesian Methods in Brain Imaging
The General Linear Model
Hierarchical Models and
The General Linear Model (GLM)
Bayesian inference J. Daunizeau
M/EEG Statistical Analysis & Source Localization
Bayesian Inference in SPM2
The General Linear Model
Dynamic Causal Modelling for evoked responses
The General Linear Model
The General Linear Model
Bayesian Model Selection and Averaging
Presentation transcript:

1 Jean Daunizeau Wellcome Trust Centre for Neuroimaging 23 / 10 / 2009 EEG-MEG source reconstruction

2 EEG/MEG data baseline correction averaging over trials low pass filter (20Hz) trials data convert epoching sensor locations inverse modelling 1st level contrast standard SPM analysis gain matrix individual meshes evoked responses cortical sources spatial denormalisation anatomical templates structural MRI BEM forward modelling

3 EEG/MEG data baseline correction averaging over trials low pass filter (20Hz) trials data convert epoching sensor locations inverse modelling 1st level contrast gain matrix evoked responses anatomical templates standard SPM analysis individual meshes cortical sources spatial denormalisation structural MRI BEM forward modelling

4 1.Introduction 2.Forward problem 3.Inverse problem 4.Bayesian inference applied to distributed source reconstruction 5.SPM variants of the EEG/MEG inverse problem 6.Conclusion BayesSPMConclusionInverseForward Introduction

5  Forward problem = modelling  Inverse problem = estimation of the model parameters BayesInverseForward Introduction Forward and inverse problems: definitions SPMConclusion

6 current dipole BayesInverseForward Introduction Physical model of bioelectrical activity SPMConclusion

7 measurements noise dipoles gain matrix Y = KJ + E 1 BayesInverseForward Introduction Fields propagation through head tissues SPMConclusion

8 Jacques Hadamard ( ) 1.Existence 2.Unicity 3.Stability BayesForward Introduction An ill-posed problem InverseSPMConclusion

9 Jacques Hadamard ( ) 1.Existence 2.Unicity 3.Stability BayesForward Introduction An ill-posed problem InverseSPMConclusion

10 BayesForward Introduction Imaging solution: cortically distributed dipoles InverseSPMConclusion

11 BayesForward Introduction Imaging solution: cortically distributed dipoles InverseSPMConclusion

12 Data fit Adequacy with other modalities Spatial and temporal constraints W = I : minimum norm method W = Δ : LORETA (maximum smoothness) data fitconstraint (regularization term) BayesForward Introduction Regularization InverseSPMConclusion

13 likelihoodpriors posterior model evidence Forward Introduction Priors and posterior InverseBayesSPMConclusion

14 sensor level source level Q : (known) variance components (λ,μ) : (unknown) hyperparameters Forward Introduction Hierarchical generative model InverseBayesSPMConclusion

15 YJμ1μ1 μqμq λ1λ1 λqλq Forward Introduction Hierarchical generative model: graph InverseBayesSPMConclusion

16 Forward Introduction Variational Bayesian inversion (VB, EM, ReML) InverseBayesSPMConclusion free energy : functional of q  approximate (marginal) posterior distribution:

17 generative model M prior covariance structure IID COH ARD/GS Forward Introduction Imaging source reconstruction in SPM InverseBayesSPMConclusion

18 Source reconstruction for group studies canonical meshes! Forward Introduction Group studies InverseBayesSPMConclusion

19 EEG/MEG data measurement noise precision ECD positions ECD moments ECD moments prior precision ECD positions prior precision soft symmetry constraints! Somesthesic stimulation (evoked potential) Forward Introduction Equivalent Current Dipoles (ECD) InverseBayesSPMConclusion

20 Forward Introduction Dynamic Causal Modelling (DCM) InverseBayesSPMConclusion GolgiNissl internal granular layer internal pyramidal layer external pyramidal layer external granular layer action potentials generation zone synapses macro-scalemeso-scalemicro-scale PC EI II firing rate membrane potential (mV) time (s)

21 Forward Introduction InverseBayesSPMConclusion

22 Prior information is mandatory to solve the inverse problem. EEG/MEG source reconstruction: 1. forward problem; 2. inverse problem (ill-posed). Bayesian inference is well suited for: 1. introducing such prior information… 2. … and estimating their weight wrt the data 3. providing us with a quantitative feedback on the adequacy of the model. Forward Introduction InverseBayesSPMConclusion

23 R L individual reconstructions in MRI template space RFX analysis p < 0.01 uncorrected RL 2nd level group analysis Forward Introduction InverseBayesSPMConclusion

24 Many thanks to Karl Friston, Stephan Kiebel, Jeremie Mattout and Vladimir Litvak Forward Introduction InverseBayesSPMConclusion