Resonant Inelastic Soft X-ray Scattering on Molecular Materials 1.Energy resolution: A:Free molecules Nuclear wavepacket dynamics; quantum beats Dipole Selection Rules; new established, old violated Vibronic Coupling B: Liquids Intramolecular soft modes and intermolecular interactions Hydrogen bonding C:Complex materials Kaolinite: -OH vibrations Amorphous Al 2 O 3 : quasi-molecules 2.Time Resolution and Non-linear Effects: XFEL, SwissFEL, SwedFEL... Double Core Holes Stimulated RIXS and Four-wave mixing Jan-Erik Rubensson Uppsala University Sigtunahöjden 30-31/1 2012
Local electronic structure Potential surfaces Selectivity and dipole selection rules Vibronic coupling, femtosecond symmetry breaking and dissociation Detuning and fast dynamics Correlation and multiple excitations Photon-in-photon-out SXE and RIXS
G. Ghiringhelli et al., REVIEW OF SCIENTIFIC INSTRUMENTS 77, adress/index. html Big is beautiful for MAX-IV
Gas/liquid Cell for gas-phase and liquid samples Small is beautiful
P. Glans, et al. PRL 76, 2488 (-96) ’ Strict dipole selection rules apply: Gerade Ungerade Gerade Inversion symmetry is not broken The oxygen molecule 1g1g 1u1u 2g2g 2u2u 3g3g 3u3u 1u1u 1g1g Right? Left? Both? OO OO Where is the core hole?
Air at the O 1s *resonance Hennies, et al. PRL. 104, (2010)
Controlling the nuclear motion Constant- approximation ”valid” Constant-fluorescence-yield approximation ”valid” Potential surface and lifetime of the core excited state. 1.5 fs meV Å Scattering Duration Time 4.2 fs 2.5 fs 0.88 fs Concept developed by Faris Gel’mukhanov and Hans Ågren
J. S.Morill, et al., JCP, 111,173 (1999) For the first time; sensible comparison to low-energy methods. Dipole selection simplifies life
Final state is composed of two interacting potential curves: B’ 3 g Wave packet is tuned to emphasize Bound States in Shallow Minimum States at Avoided Curve Crossing Continuum of Repulsive Curves
Quantum Beats in Ultrafast Dissociation of O 2 Excited on the * Resonance A. Pietzsch et al., PRL106, (2011)
Y.-P. Sun et al., J. Phys. B: At. Mol. Opt. Phys. 44 (2011) Hole-electron Parity swap Internal spin coupling conservation Dipole Selection Rules
Liquids RIXS with High Resolution: Acetone Y.-P. Sun et al., Phys. Rev. B 84, (2011) Intramolecular soft modes and intermolecular interactions Natural line shapes
Vibrational dynamics in the electronic ground state for the conformations excited at the ”prepeak”. The antisymmetric stretch=433meV, and symmetric stretch= 407 meV (G. E. Walrafen and E. Pugh, J. Solution Chem. 33 (2004) 81-97). Bending and librations in addition. What can RIXS say about liquid water?
Molecular Dynamics or ? Complex Molecular Materials Trapped oxygen pairs in amorphous aluminum oxide Stochastic Quenching C. Århammar et al., PNAS 108, 6355 (2011)
Vibrations in Kaolinite
At the FEL Photon-in-photon-out: Plasma potentials don’t matter Virtually no secondary inelastic scattering
RIXS at Exotic Excitations: Chemical Sensitivity of Double Core Hole Resonances 1s -2 1s -1 GS Investigation for lithium compounds in the thesis of Marcus Agåker, PRL93, (2004), PRB73, (2006), PRB74, (2006), PRB (2007) Dipole Selection No Influence of Plasma Potentials
Pulse compression, Burnham-Chiao modulation and four wave mixing 18 Phys Rev A 81 (2010) Phys Rev A 81 (2010) EuroPhys.Lett. 87(2009)64002 J. Phys.B:At.Mol.Opt.Phys. 42(2009) Ph D Thesis of Y.-P. Sun 2011 Theory by the group of F. Gel’mukhanov Ar 2p->4s
Four-wave mixing
Detector Cylindrical grating Cylindrical mirror FEL beam Sample h =550 eV h =50 meV h =260 eV h =25 meV 1-D Imaging Soft X-ray Spectrometer Time resolving capability Mirror [cm] Focus [ m] Resolution [fs] [ps]
Acknowledgements SLS measurements Franz Hennies, Uppsala, MAX-lab Annette Pietzsch, MAX-lab Brian Kennedy, MAX-lab Martin Berglund, HZB Justina Schlappa, HZB Alexander Föhlisch, HZB Vladimir Strocov, SLS Thorsten Schmitt, SLS SLS measurements Franz Hennies, Uppsala, MAX-lab Annette Pietzsch, MAX-lab Brian Kennedy, MAX-lab Martin Berglund, HZB Justina Schlappa, HZB Alexander Föhlisch, HZB Vladimir Strocov, SLS Thorsten Schmitt, SLS Theory Gases and liquids : Hans Karlsson, Uppsala University Faris Gel’mukhanov, KTH, Stockholm Yuping Sun, KTH, Stockholm Michael Odelius, Stockholm University Complex materials Cecilia Århammar,, Uppsala University Jawad Nisar, Uppsala University Raeev Ahuja, Uppsala University Theory Gases and liquids : Hans Karlsson, Uppsala University Faris Gel’mukhanov, KTH, Stockholm Yuping Sun, KTH, Stockholm Michael Odelius, Stockholm University Complex materials Cecilia Århammar,, Uppsala University Jawad Nisar, Uppsala University Raeev Ahuja, Uppsala University Window maker Joakim Andersson, Uppsala Window maker Joakim Andersson, Uppsala SAXES set-up G. Ghiringhelli, L. Braicovich et al. SAXES set-up G. Ghiringhelli, L. Braicovich et al. Double Core Holes Marcus Agåker, Uppsala Double Core Holes Marcus Agåker, Uppsala
Parameters 22
Photon energy[eV]550,000 Photon energy diff.[eV]0,050 Order of diffr. -1,000 Slit width[um]1,000 Slit length[mm] 6,000 Groove density[1/mm]600,000 Grating radius[mm]15000,000 Inc.angle grating[deg]86,400 Detector height[mm]30,000 Detector length[mm]40,000 Entrance arm[mm]941,858 Detector resolution.[um]5,000 Grating height[mm]30,000 Grating width[mm]30,000 Inc.angle mirror[deg]3,000 Mirror radius[m]14,046 Mirror heigth[mm]25,00 Mirror length[mm]75 Photon energy[eV]260,000 Photon energy diff.[eV]0,025 Order of diffr. -1,000 Slit width[um]1,000 Slit length[mm] 6,000 Groove density[1/mm]600,000 Grating radius[mm]15000,000 Inc.angle grating[deg]85,520 Detector height[mm]30,000 Detector length[mm]40,000 Entrance arm[mm]1171,667 Detector resolution.[um]5,000 Grating height[mm]30,000 Grating width[mm]30,000 Inc.angle mirror[deg]3,000 Mirror radius[m]14,015 Mirror heigth[mm]25,00 Mirror length[mm]75