1 Daniel Friedrich GWADW Kyoto – May 17th, 2010 Waveguide grating mirrors Insights from the inside Future Past Present Daniel Friedrich, Michael Britzger,

Slides:



Advertisements
Similar presentations
Albert-Einstein-Institute Hannover ET filter cavities for third generation detectors ET filter cavities for third generation detectors Keiko Kokeyama Andre.
Advertisements

Aspects of Fused Silica Suspensions in Advanced Detectors Geppo Cagnoli University of Texas at Brownsville and TSC LIGO, Hanford.
Coating-reduced interferometer optics Resonant waveguide gratings S. Kroker, T. Käsebier, E.-B. Kley, A. Tünnermann.
Harald Lück, AEI Hannover 1 GWADW- May, 10-15, 2009 EU contract #
Nawrodt 05/2010 Thermal noise in the monolithic final stage Ronny Nawrodt Matt Abernathy, Nicola Beveridge, Alan Cumming, Liam Cunningham, Giles Hammond,
GWADW, May 2012, Hawaii D. Friedrich ICRR, The University of Tokyo K. Agatsuma, S. Sakata, T. Mori, S. Kawamura QRPN Experiment with Suspended 20mg Mirrors.
GWADW 2010 in Kyoto, May 19, Development for Observation and Reduction of Radiation Pressure Noise T. Mori, S. Ballmer, K. Agatsuma, S. Sakata,
1 Kazuhiro Yamamoto Istituto Nazionale di Fisica Nucleare Sezione di Padova Substrate thermoelastic noise and thermo-optic noise at low temperature in.
STREGA WP1/M1 mirror substrates GEO LIGO ISA Scientific motivation: Mechanical dissipation from dielectric mirror coatings is predicted to be a significant.
Interferometer Topologies and Prepared States of Light – Quantum Noise and Squeezing Convenor: Roman Schnabel.
Experimental test of higher-order LG modes in the 10m Glasgow prototype interferometer B. Sorazu, P. Fulda, B. Barr, A. Bell, C. Bond, L. Carbone, A. Freise,
A. Bunkowski Nano-structured Optics for GW Detectors 1 A.Bunkowski, O. Burmeister, D. Friedrich, K. Danzmann, and R. Schnabel in collaboration with T.
L-V meeting, Hannover, Germany, Oct, Overview of Coating Research Sheila Rowan University of Glasgow On behalf of coating subgroup.
Nawrodt 05/2010 Thermal noise and material issues for ET Ronny Nawrodt Matt Abernathy, Nicola Beveridge, Alan Cumming, Liam Cunningham, Giles Hammond,
Overview of coatings research and recent results at the University of Glasgow M. Abernathy, I. Martin, R. Bassiri, E. Chalkley, R. Nawrodt, M.M. Fejer,
Thermal noise from optical coatings Gregory Harry Massachusetts Institute of Technology - on behalf of the LIGO Science Collaboration - 25 July
Absorption in bulk crystalline silicon and in the crystal surfaces Aleksandr Khalaidovski 1 Alexander Khalaidovski 1, Jessica Steinlechner 2, Roman Schnabel.
Nawrodt 23/03/2011 Experimental Approaches for the Einstein Telescope Ronny Nawrodt on behalf of the Einstein Telescope Science Team and the ET DS Writing.
LIGO Coating Project Gregory Harry LIGO/MIT - On Behalf of the Coating Working Group - LIGO/Virgo Thermal Noise Workshop October 7, 2006 Pisa, Italy LIGO-G R.
Absorption in bulk crystalline silicon and in the crystal surfaces Aleksandr Khalaidovski 1 Alexander Khalaidovski 1, Jessica Steinlechner 2, Roman Schnabel.
DFG-NSF Astrophysics Workshop Jun 2007 G Z 1 Optics for Interferometers for Ground-based Detectors David Reitze Physics Department University.
Low temperature dissipation in coating materials S. Reid 1, I. Martin 1, H. Armandula 3, R. Bassiri 1, E. Chalkley 1 C. Comtet 4, M.M. Fejer 5, A. Gretarsson.
1 Kazuhiro Yamamoto Institute for Cosmic Ray Research, the University of Tokyo Cryogenic mirrors: the state of the art in interferometeric gravitational.
Friedrich-Schiller-Universität Jena Institute of Solid State Physics – Low Temperature Physics Christian Schwarz19 th May GWADW Kyoto 1 Losses in.
1 Kazuhiro Yamamoto Max-Planck-Institut fuer Gravitationsphysik (Albert-Einstein-Institut) Institut fuer Gravitationsphysik, Leibniz Universitaet Hannover.
Thermoelastic dissipation in inhomogeneous media: loss measurements and thermal noise in coated test masses Sheila Rowan, Marty Fejer and LSC Coating collaboration.
Janyce Franc-Kyoto-GWADW1 Simulation and research for the future ET mirrors Janyce Franc, Nazario Morgado, Raffaele Flaminio Laboratoire des Matériaux.
Janyce Franc Effect of Laguerre Gauss modes on thermal noise Janyce Franc, Raffaele Flaminio, Nazario Morgado, Simon Chelkowski, Andreas Freise,
Suspension Thermal Noise Giles Hammond (University of Glasgow) on behalf of the Strawman Red Team GWADW 2012, 18 th May 2012 LIGO-G
Cryogenic Xylophone Kyoto May Kentaro Somiya Waseda Inst. for Adv. Study Collaboration work with S.Hild, K.Kokeyama, H.Mueller-Ebhardt, R.Nawrodt,
STREGA & ET - 4th ILIAS-GW general meeting 1 STREGA legacy for ET Michele Punturo INFN Perugia.
Progress in LIGO Coating Development Gregory Harry Massachusetts Institute of Technology - LIGO Laboratory - March 21, 2008 Coating Workshop - Caltech.
Mechanical Loss and Thermal Conductivity of Materials for KAGRA and ET
Optics related research for interferometric gravitational wave detectors S. Rowan for the Optics working group of the LIGO Scientific Collaboration SUPA,
Some Ideas on Coatingless all-reflective ITF Adalberto Giazotto (*) INFN- Pisa (*) Work done in collaboration with G. Cella.
LIGO-G Z Silicon as a low thermal noise test mass material S. Rowan, R. Route, M.M. Fejer, R.L. Byer Stanford University P. Sneddon, D. Crooks,
Heinert et al Properties of candidate materials for cryogenic mirrors 1 Properties of candidate materials for cryogenic mirrors D. Heinert,
Estimating thermo-optic noise from AdLIGO coatings Embry-Riddle Andri M. Gretarsson DCC#: G Z.
Internal Mode Qs of Monolithically Suspended Test Masses in GEO600 Joshua Smith, Harald Lück, Stefan Goßler, Gianpietro Cagnoli, David Crooks, Sheila Rowan,
Friedrich-Schiller-University Jena Institute of Solid State Physics – Low Temperature Physics Christian Schwarz 15 th September Genoa 1 Investigation.
Design and Testing of a Silicon Suspension A. Cumming 1, G. Hammond 1, K. Haughian 1, J. Hough 1, I. Martin 1, R. Nawrodt 2, S. Rowan 1, C. Schwarz 2,
1/16 Nawrodt, Genoa 09/2009 An overview on ET-WP2 activities in Glasgow R. Nawrodt, A. Cumming, W. Cunningham, J. Hough, I. Martin, S. Reid, S. Rowan ET-WP2.
WP2-WP3 Joint Meeting - Jena - March 1-3, Several different mechanisms contribute to the thermal noise of the mirror: Brownian (BR)(substrate, coating)
Studies of materials to reduce coating thermal noise K. Craig 1, I.W. Martin 1, S. Reid 2, M. Abernathy 1, R. Bassiri 1,4, K. Borisenko 3, A. Cumming 1,
Low temperature dissipation in coating materials S. Reid 1, I. Martin 1, E. Chalkley 1, H. Armandula 3, R. Bassiri 1, C. Comtet 4, M.M. Fejer 5, A. Gretarsson.
Measurement of coating mechanical loss Junko Katayama, K.Craig, K.Yamamoto, M.Ohashi ICRR 0.
Ronny Nawrodt 1st ELiTES General Meeting Tokyo 04/10/2012 Silicon Surfaces – Silicon Loss and Silicon Treatments –
Materials 2 G. Cole (Vienna) – Crystalline Coatings S. Koker (Jena) – Waveguide Coatings R. Nawrodt (Jena) – Silicon research GWADW 2011 – La Biodola,
Department of Physics & Astronomy Institute for Gravitational Research Scottish Universities Physics Alliance Brownian thermal noise associated with attachments.
Low-loss Grating for Coupling to a High-Finesse Cavity R. Schnabel, A. Bunkowski, O. Burmeister, P. Beyersdorf, T. Clausnitzer*, E. B. Kley*, A. Tünnermann*,
Low-loss Grating for Coupling to a High-Finesse Cavity R. Schnabel, A. Bunkowski, O. Burmeister, P. Beyersdorf, T. Clausnitzer*, E. B. Kley*, A. Tünnermann*,
Friedrich-Schiller-University Jena Institute of Solid State Physics – Low Temperature Physics Christian Schwarz Current status of the bulk.
Substrates and nano-structured surfaces for future GW observatories
Deep Chatterjee IISER Kolkata Mentors: Koji Arai; Matthew Abernathy
Mechanical Loss in Silica substrates
Studies of some properties of Hydroxide-Catalysis Bonds
Roman Schnabel for the AEI-Division Karsten Danzmann
Optimization of thermal noise for ET-LF sensitivity
Overview of quantum noise suppression techniques
Mirror thermal noises and its implications on the mirror design
Interferometric speed meter as a low-frequency gravitational-wave detector Helge Müller-Ebhardt Max-Planck-Institut für Gravitationsphysik (AEI) and Leibniz.
Current status of coating research in Glasgow
Quantum noise reduction techniques for the Einstein telescope
Thermal noise reduction through LG modes
Nanostructured Optics
LIGO Scientific Collaboration
Main Efforts of the Core Optics WG
Thermal Noise Interferometer Update and Status
Flat-Top Beam Profile Cavity Prototype
Presentation transcript:

1 Daniel Friedrich GWADW Kyoto – May 17th, 2010 Waveguide grating mirrors Insights from the inside Future Past Present Daniel Friedrich, Michael Britzger, Karsten Danzmann and Roman Schnabel Frank Brückner, Stefanie Kroker, Ernst-Bernhard Kley and Andreas Tünnermann Max Planck Institute for Gravitational Physics (AEI Hannover), Leibniz Universität Hannover Institute of Applied Physics, Friedrich-Schiller-Universität Jena

2 Daniel Friedrich GWADW Kyoto – May 17th, 2010 Coating thermal noise AdvLIGOAdvVirgo Future Past Present

3 Daniel Friedrich GWADW Kyoto – May 17th, 2010 Coating thermal noise GEO-HF Future Past Present GEO-HF logbook, page 60

4 Daniel Friedrich GWADW Kyoto – May 17th, 2010 Coating thermal noise Future Past Present LCGT: Proposed

5 Daniel Friedrich GWADW Kyoto – May 17th, 2010 Coating thermal noise Einstein Telescope: Goal sensitivity Future Past Present

6 Daniel Friedrich GWADW Kyoto – May 17th, 2010 The 22nd century Future Past Present

7 Daniel Friedrich GWADW Kyoto – May 17th, 2010 Addressing coating Brownian noise Material research e.q. mechanical loss φ Reduction of coating thickness d Cryogenic temperature T Larger beam size r 0 Future Past Present G. Harry et al., CQG, 19, 897 (2002)

8 Daniel Friedrich GWADW Kyoto – May 17th, 2010 Corner reflectors V. B. Braginski and S. P. Vyatchanin Phys. Lett. A 324, 345 (2004) The ANU coating-free mirror S. Goßler et al. Phys. Rev A 76, (2007) Cavity as mirror F. Ya. Khalili Phys. Lett. A 334, 67 (2005) Coating-free corner reflector G. Cella and A. Giazotto Phys. Rev. D, (2006) Novel ideas Future Past Present Stefan Goßler Tuesday 7pm

9 Daniel Friedrich GWADW Kyoto – May 17th, 2010 Waveguide grating mirrors Rigorous Coupled Wave Analysis (RCWA) Future Past Present Broadband waveguide grating 1064nm A. Bunkowski et al. Class. Quantum Grav. 23, 7297 (2006)

10 Daniel Friedrich GWADW Kyoto – May 17th, 2010 On the road to coating-free mirrors Future Past Present Single-layer Monolithic Quasi-Monolithic

11 Daniel Friedrich GWADW Kyoto – May 17th, 2010 Silica Tantala Single-layer 1064nm Future Past Present

12 Daniel Friedrich GWADW Kyoto – May 17th, 2010 Grating size: 7.5mm*7.5mm Cavity Length = (0.495±0.001)m Beam radius  100  m Finesse  650 Highest reflectivity = (99.08±0.05)% Entire area: R>96% Single-layer 1064nm Future Past Present

13 Daniel Friedrich GWADW Kyoto – May 17th, 2010 Monolithic 1550nm Crystalline Si Future Past Present

14 Daniel Friedrich GWADW Kyoto – May 17th, 2010 silica mask on a Si-substrate 1. anisotropic etching 2. resist removal 3. passivation of sidewalls 4. isotropic etching 5. BOSCH®- process 6. removal of passivated layer Monolithic 1550nm Future Past Present

15 Daniel Friedrich GWADW Kyoto – May 17th, 2010 Monolithic 1550nm Future Past Present

16 Daniel Friedrich GWADW Kyoto – May 17th, 2010 Monolithic 1550nm Future Past Present Grating size: 7.5mm*13mm Cavity Length = (24±0.5)mm Beam radius  50  m Finesse  3000 Highest reflectivity = (99.8±0.01)% Area of 2mm*2mm: R= (99.77±0.01)%

17 Daniel Friedrich GWADW Kyoto – May 17th, 2010 Quasi-Monolithic 1550nm Future Past Present

18 Daniel Friedrich GWADW Kyoto – May 17th, 2010 Bonding Coating Quasi-Monolithic 1550nm Future Past Present 1st try Not done yet

19 Daniel Friedrich GWADW Kyoto – May 17th, 2010 Quasi-Monolithic 1550nm R=(93±0.5)% Future Past Present optimal design

20 Daniel Friedrich GWADW Kyoto – May 17th, 2010 (99.8 ± Design/Experiment Opt. Express 17, (2009) PRL 104, (2010) Opt. Express 17, 163 (2009) (93 ± (99.08 ± CQG 23, 7297 (2006) Opt. Lett. 33, 3 (2008) Future Past Present

21 Daniel Friedrich GWADW Kyoto – May 17th, 2010 Coating thermal noise Brownian = Thermoelastic + Thermorefractive TT Future Past Present  thermal fluctuations  thermal energy T G. Harry et al., CQG, 19, 897 (2002) M. Evans et al., Phys. Rev. D 78, (2008) Thermo-optic

22 Daniel Friedrich GWADW Kyoto – May 17th, 2010 Coating thermal 1064nm Future Past Present ET

23 Daniel Friedrich GWADW Kyoto – May 17th, 2010 Coating thermal noise (roughly) Brownian Thermoelastic Thermorefractive Future Past Present …  8 uppermost double layer dominate … coating thickness … coating thickness & mechanical loss M. Evans et al., Phys. Rev. D 78, (2008)

24 Daniel Friedrich GWADW Kyoto – May 17th, 2010 WG thermal noise (roughly) Future Past Present Brownian Thermoelastic Thermorefractive … strongly depends on the design … coating thickness … coating thickness & mechanical loss

25 Daniel Friedrich GWADW Kyoto – May 17th, 2010 Brownian noise estimates of WGs T=18K Contribution from R. Nawrodt Dedicated Q-factor measurements are on the way Future Past Present SiO2/Ta2O5  6  m Ta2O5  0.4  m Si  1.5  m Si-substrate Theoretical: Experimental: Christian Schwarz Wednesday 5:20pm Brownian … coating thickness & mechanical loss

26 Daniel Friedrich GWADW Kyoto – May 17th, 2010 Future Past Present High coupling efficiency (±1T  33%) Low coupling efficiency (±1T  1%) Thermorefractive noise of WGs Thermorefractive … strongly depends on the design

27 Daniel Friedrich GWADW Kyoto – May 17th, 2010 Future Past Present Thermorefractive noise of WGs  t=3nm →  Φ  50deg  t=30nm →  Φ  50deg

28 Daniel Friedrich GWADW Kyoto – May 17th, 2010 Optical thickness TT Future Past Present Tantala Silica Phase change with temperature

29 Daniel Friedrich GWADW Kyoto – May 17th, 2010 Evanescent coupling Optical thickness TT Future Past Present Tantala Silica Phase change with temperature

30 Daniel Friedrich GWADW Kyoto – May 17th, 2010 Evanescent coupling Optical thickness TT Lateral expansion (many effects) Future Past Present Tantala Silica Phase change with temperature

31 Daniel Friedrich GWADW Kyoto – May 17th, 2010 Thermal noise 1064nm Future Past Present Material properties for ML and WG assumed to be the same 0.8  m 6m6m

32 Daniel Friedrich GWADW Kyoto – May 17th, 2010 Conclusions on single layer WG Future Past Present Q: Brownian noise… A: The reduced thickness is an advantage Q: Thermoelastic noise… A: Not yet investigated, but the reduced thickness should be an advantage Q: Thermorefractive noise… A: Presented model suggests that optimal designs/materials are required

33 Daniel Friedrich GWADW Kyoto – May 17th, 2010 Thoughts about monolithic WG Future Past Present Q: Brownian noise… A: Monocrystaline structures are promising in terms of low mechanical loss Q: Thermoelastic noise… A: Modeling will be complex due to the sophisticated structure Q: Thermorefractive noise… A: Silicon allows for parameter tolerant designs. Hence, it will be much less sensitive to temperature fluctuations.

34 Daniel Friedrich GWADW Kyoto – May 17th, 2010 Glasgow prototype Looking forward to october 2010 M. Edgar et al. Opt. Lett. 34, 3184 (2009) Future Past Present

35 Daniel Friedrich GWADW Kyoto – May 17th, 2010 Modeling thermal noise (Model the structure, optimize designs, …) Work to be done Direct thermal noise measurement (Will put it to the test) Test mass size/optical quality (Scattering, further treatment, bonding, …) Future Past Present

36 Daniel Friedrich GWADW Kyoto – May 17th, 2010 Thank you

37 Daniel Friedrich GWADW Kyoto – May 17th, 2010 ‚Uninvited guests‘ ? xx 1. All phase shifts cancel 2. Numerical results agree 3. Dynamical effects unlikely

38 Daniel Friedrich GWADW Kyoto – May 17th, 2010 Thermal noise estimates R. Nawrodt et al. New Journal of Physics 9, 225 (2007) Grating structure does not „destroy“ high Q-factor of substrate, but…

39 Daniel Friedrich GWADW Kyoto – May 17th, 2010 silicon(n=3.5), λ=1550nm, d=700nm, TM-polarization Si Monolithic 1550nm

40 Daniel Friedrich GWADW Kyoto – May 17th, 2010 Monolithic 1550nm  130MHz Contribution from R. Nawrodt

41 Daniel Friedrich GWADW Kyoto – May 17th, 2010 d=690nm, s=400nm Single-layer 1064nm

42 Daniel Friedrich GWADW Kyoto – May 17th, 2010 Quasi-Monolithic 1550nm