Diamond – Tungsten Calorimeter LCAL-group : K. Afanasiev, V. Drugakov, E. Kouznetsova, W. Lohmann, A. Stahl Workshop on Forward Calorimetry and Luminosity.

Slides:



Advertisements
Similar presentations
Proposal for a new design of LumiCal R. Ingbir, P. Ruzicka, V. Vrba October 07 Malá Skála.
Advertisements

Quartz Plate Calorimeter Prototype Ugur Akgun The University of Iowa APS April 2006 Meeting Dallas, Texas.
Design Studies and Sensor Test for the Beam Calorimeter of the ILC Detector E. Kuznetsova DESY Zeuthen.
17-May-15Actual problems of microworld physics. Gomel Investigation of radiation hard sensors for the ILC forward calorimeter K. Afanaciev, Ch. Grah,
17-May-15FCAL collaboration meeting. Krakow.. Radiation hardness of GaAs Sensors K. Afanaciev, Ch. Grah, A. Ignatenko, W. Lange, W. Lohmann, M. Ohlerich.
TESLA R&D: LCAL/LAT Achim Stahl DESY Zeuthen Cracow Tel Aviv Minsk Prague Colorado Protvino UCL London Dubna.
Investigation of the properties of diamond radiation detectors
Background Studies Takashi Maruyama SLAC ALCPG 2004 Winter Workshop January 8, 2004.
The Detector and Interaction Region for a Photon Collider at TESLA
Luminosity and beam calorimeter report E. Kouznetsova, DESY.
August 2005Snowmass Workshop IP Instrumentation Wolfgang Lohmann, DESY Measurement of: Luminosity (precise and fast) Energy Polarisation.
August 2005Snowmass Workshop Instrumentation of the Very Forward Region of a Linear Collider Detector Wolfgang Lohmann, DESY.
Karsten Büßer Beam Induced Backgrounds at TESLA for Different Mask Geometries with and w/o a 2*10 mrad Crossing Angle HH-Zeuthen-LC-Meeting Zeuthen September.
22 December 20143rd FCAL Hardware WG Meeting 1 BeamCal sensors overview Sergej Schuwalow, DESY Hamburg.
1 LumiCal Optimization and Design Takashi Maruyama SLAC SiD Workshop, Boulder, September 18, 2008.
22 October 2009FCAL workshop, Geneve1 Polarization effects in the radiation damaged scCVD Diamond detectors Sergej Schuwalow, DESY Zeuthen On behalf of.
Jan MDI WS SLAC Electron Detection in the Very Forward Region V. Drugakov, W. Lohmann Motivation Talk given by Philip Detection of Electrons and.
Luminosity Monitoring and Beam Diagnostics FCAL Collaboration Workshop TAU, September 18-19, 2005 Christian Grah.
14 December nd CARAT Workshop, GSI, Darmstadt1 Radiation hardness studies with relativistic electrons Sergej Schuwalow, Uni-HH / DESY On behalf of.
Analysis of Beamstrahlung Pairs ECFA Workshop Vienna, November 14-17, 2005 Christian Grah.
Calorimeter technologies for forward region instrumentation K. Afanaciev 2, R. Dollan 1 V. Drugakov 2, C. Grah 1, E. Kouznetsova 1, W. Lange 1, W. Lohmann.
March 2004LCWS Stanford Instrumentation of the Very Forward Region of a Linear Collider Detector Wolfgang Lohmann, DESY.
Instrumentation of the very forward region of the TESLA detector – summary of the Workshop on Forward Calorimetry and Luminosity Measurement, Zeuthen,
Diamond Detector Developments at DESY and Measurements on homoepitaxial sCVD Diamond Christian Grah - DESY Zeuthen 2 nd NoRHDia Workshop at GSI Thursday,
CVD Diamond Sensor Studies for the Beam Calorimeter of the ILC Detector K. Afanaciev 2, I.Emelianchik 2, Ch. Grah 1, E. Kouznetsova 1, W. Lange 1, W. Lohmann.
Polycrystalline CVD Diamonds for the Beam Calorimeter of the ILC C. Grah 1, U. Harder 1, H. Henschel 1, E. Kouznetsova 1, W. Lange 1, W. Lohmann 1, M.
2. December 2005Valencia Workshop Very Forward Region Instrumentation Wolfgang Lohmann, DESY Basic functions: - Hermeticity to small polar angles - Fast.
1 Energy loss correction for a crystal calorimeter He Miao Institute of High Energy Physics Beijing, P.R.China.
Electron Detection for Compton Polarimetry Michael McDonald Outline -Compton Effect -Polarimetry -Detectors -Diamond Results.
Karsten Büßer Instrumentation of the Forward Region of the TESLA Detector International Europhysics Conference on High Energy Physics Aachen, July 19th.
First results from silicon and diamond sensors K. Afanasiev 1, I. Emeliantchik 1, E. Kouznetsova 2, W. Lohmann 2, W. Lange 2 1 NC PHEP, Minsk 2 DESY Zeuthen.
Coil and HCAL Parameters for CLIC Solenoid and Hadron-calorimetry for a high energy LC Detector 15. December LAPP Christian Grefe CERN.
Electron Detection in the SiD BeamCal Jack Gill, Gleb Oleinik, Uriel Nauenberg, University of Colorado ALCPG Meeting ‘09 2 October 2009.
Optimization of the Design of the Forward Calorimeters ECFA LC Workshop Montpellier, 15 November 2003 *FC Collaboration: Colorado, Cracow, DESY(Zeuthen),
Calorimeter in front of MUCh Mikhail Prokudin. Overview ► Geometry and acceptance ► Reconstruction procedure  Cluster finder algorithms  Preliminary.
TESLA R&D: Forward Region Achim Stahl DESY Zeuthen Cracow Tel Aviv Minsk Prague Colorado Protvino UC London Dubna.
HEP Tel Aviv University LumiCal (pads design) Simulation Ronen Ingbir FCAL Simulation meeting, Zeuthen Tel Aviv University HEP experimental Group Collaboration.
February, INP PAN FCAL Workshop in Cracow W. Lohmann, DESY The BCD (Baseline Configuration Document) The next calendar dates Where we are with FCAL.
11/18/2016 Test beam studies of the W-Si tracking calorimeter for the PHENIX forward upgrade Y. Kwon, Yonsei Univ., PHENIX.
A Prototype Diamond Detector for the Compton Polarimeter in Jefferson lab, Hall C Medium Energy Physics Group Amrendra.
The Luminosity Calorimeter Iftach Sadeh Tel Aviv University Desy ( On behalf of the FCAL collaboration ) June 11 th 2008.
1 LumiCal Optimization Simulations Iftach Sadeh Tel Aviv University Collaboration High precision design May 6 th 2008.
Lucia Bortko | Optimisation Studies for the BeamCal Design | | IFJ PAN Krakow | Page 1/16 Optimisation Studies for the BeamCal Design Lucia.
PPAC in ZDC for Trigger and Luminosity Edwin Norbeck University of Iowa Luminosity Workshop November 5, 2004.
Polycrystalline CVD Diamonds for the Beam Calorimeter of the ILC C.Grah ILC ECFA 2006 Valencia, 9 th November 2006.
October DESY PRC Instrumentation of the Very Forward Region of a Linear Collider Detector Univ. of Colorado, Boulder, AGH Univ., INP & Jagiell.
Tungsten-Silicon Luminosity Detector with Flat Geometry Ronen Ingbir Tel Aviv University High Energy Physics Experimental Group.
Beamdiagnostics using BeamCal C.Grah FCAL Workshop, Paris,
LumiCal background and systematics at CLIC energy I. Smiljanić, Vinča Institute of Nuclear Sciences.
1 LoI FCAL Takashi Maruyama SLAC SiD Workshop, SLAC, March 2-4, 2009 Contributors: SLAC M. BreidenbachFNALW. Cooper G. Haller K. Krempetz T. MarkiewiczBNLW.
November, 7, 2006 ECFA06, Valencia, Spain LumiCal & BeamCal readout and DAQ for the Very Forward Region Wojciech Wierba Institute of Nuclear Physics Polish.
Philip Bambade, Pierre Barillon, Frédéric Bogard, Selma Conforti, Patrick Cornebise, Shan Liu, Illia Khvastunov Journée PHIL
FCAL Krakow meeting, 6. May LumiCal concept including the tracker R. Ingbir, P.Růžička, V. Vrba.
I nstrumentation of the F orward R egion Collaboration High precision design ECFA - Durham2004 University of Colorado AGH University, Cracow I nstitute.
Very Forward Instrumentation: BeamCal Ch. Grah FCAL Collaboration ILD Workshop, Zeuthen Tuesday 15/01/2008.
Simulation and reconstruction of CLAS12 Electromagnetic Calorimeter in GSIM12 S. Stepanyan (JLAB), N. Dashyan (YerPhI) CLAS12 Detector workshop, February.
FCAL Takashi Maruyama SLAC SiD Workshop, 15 – 17 November, 2010, Eugene, Oregon.
PPAC Jonathan Olson University of Iowa HCAL November 11-13, 2004.
Initial proposal for the design of the luminosity calorimeter at a 3TeV CLIC Iftach Sadeh Tel Aviv University March 6th 2009
Doses and bunch by bunch fluctuations in BeamCal at the ILC Eliza Teodorescu FCAL Collaboration Meeting June 29-30, 2009, DESY-Zeuthen, Germany.
Forward Tagger Simulations
Luminosity Measurement using BHABHA events
Layout of Detectors for CLIC
The Optimized Sensor Segmentation for the Very Forward Calorimeter
Investigation of diamond sensors for calorimetry
Wolfgang Lohmann DESY (Zeuthen)
Simulation study for Forward Calorimeter in LHC-ALICE experiment
Study of e+ e- background due to beamstrahlung for different ILC parameter sets Stephan Gronenborn.
Luminosity and beam calorimeter report E. Kouznetsova, DESY
CVD Diamond Sensors for the Very Forward Calorimeter of a Linear Collider Detector K. Afanaciev, D. Drachenberg, E. Kouznetsova, W. Lange, W. Lohmann.
Presentation transcript:

Diamond – Tungsten Calorimeter LCAL-group : K. Afanasiev, V. Drugakov, E. Kouznetsova, W. Lohmann, A. Stahl Workshop on Forward Calorimetry and Luminosity Measurement In the TESLA Detector November 2002, DESY-Zeuthen

 Location  Requirements Detection and measurement of electrons and photons at small angles Fast beam diagnostic Improvement of the energy flow measurement in forward/backward direction Shielding of the inner part of the detector

 Beam-beam Background GUINEAPIG + BRAHMS ( for √s = 500 GeV ) : Per bunchcrossing : ~15000 e ± hits ~20 TeV of deposited energy (R,  )-distribution of the deposited energy: High radiation resistivity is required Two options for calorimeter technology : Heavy scintillator Diamond-tungsten sandwich

 CVD DIAMOND properties SiliconCVD-Diamond Resistivity,  ×cm 2.3×10 5 [b3] [f] Carrier density, cm -3 15×10 10 [b3]<10 3 [b3] Dielectric constant11.9 [b3]5.7 [f] Capacity (1 cm 2, 500  m), pF 3517 Leakage current, pA/mm Breakdown field, V/cm3×10 5 [b3]10 7 [f] Band gap, eV1.12 [b3]5.45 [f] Cohesive energy, eV/atom4.36 [b3]7.37 [b2] Energy/(e - -h pair), eV3.6 [b3]13 [b3] Mobility, cm 2 /(V×s) e-e [b3]1800 [b3] [f] h480 [b3]1200 [b3] [f] Saturation velocity, ×10 7 cm/s e-e- ~ 0.8 (?)2.7 [b1] h 1.0 [b1] Saturation field E s, V/cm e-e- E s = f(L) 1.24×10 4 [b1] h0.63×10 4 [b1] Average e - -h number per 100  m (for MIP) 9200 [b3]3600 [b3] Energy deposition per 100  m (for MIP), keV 4050 Charge collection distance d c,  m ; d c = f(l) Radiation length, cm9.4 [Oh]18.8[Oh] Moliere radius, cm Comparison to silicon :

 CVD DIAMOND properties Radiation hardness :

 Sandwich LCAL geometry Tungsten absorber + Diamond sensor R M ~ 1 cm Z - Segmentation : Tungsten 3.5 mm Layer = Diamond 0.5 mm (R,  ) - Segmentation :

 Sandwich LCAL background Average energy deposited in “bad” cells: ~ 7 GeV Dose expected for “bad” cells : ~10 MGy/year 250 GeV e - + BG :

 Sandwich LCAL recognition Algorithm : “Suspected” cells :  E CELL > 3  BG reasonable z-location Requirement of longitudinal chain of such cells Choice of a proper ADC : sensorPA/discrADC reconstruction

 Sandwich LCAL recognition Efficiency vs radius :

 Sandwich LCAL recognition Energy resolution vs radius :

 Sandwich LCAL recognition Polar angle resolution vs radius :

 Sandwich LCAL Recognition Calibration : Averaged energy resolution :

 Sandwich LCAL Recognition Averaged angular resolution :

 Diamond/W LCAL following steps : Real sensor test : to see mip-signal : ~1.5 fC  CONCLUSIONS sandwich diamond-tungsten calorimeters seems to be a promising technology high energetic e ±,  can be detected with reasonable efficiency even near the beam pipe energy and angular resolution for diamond-tungsten are good VV50-3