1 First large DEPFET pixel modules for the Belle II Pixel Detector Felix Müller Max-Planck-Institut für Physik DPG-Frühjahrstagung der Teilchenphysik,

Slides:



Advertisements
Similar presentations
Radiation damage in silicon sensors
Advertisements

H1 SILICON DETECTORS PRESENT STATUS By Wolfgang Lange, DESY Zeuthen.
Marco Bregant Vertex05 - Nikko, November 2005 Dipartimento di Fisica Universit à di Trieste & Istituto Nazionale di Fisica Nucleare (INFN) - Trieste ALICE.
Simulation Studies of a (DEPFET) Vertex Detector for SuperBelle Ariane Frey, Max-Planck-Institut für Physik München Contents: Software framework Simulation.
Striplet option of Super Belle Silicon Vertex Detector Talk at Joint Super B factory workshop, Honolulu 20 April 2005 T.Tsuboyama.
L. Greiner1PXL Sensor and RDO review – 06/23/2010 STAR Heavy Flavor Tracker Overview With parameters pertinent to the PXL Sensor and RDO design.
Presentation at the PRC review, , DESY Status of DEPFET pixel detectors for ILC Peter Fischer for the DEPFET collaboration Bonn University:R.
1 Semiconductor Detectors  It may be that when this class is taught 10 years on, we may only study semiconductor detectors  In general, silicon provides.
Jornadas LIP, Dez P. Martins - CFTP-IST The NA60 Silicon Vertex Telescopes Dimuon measurements Dimuon measurements Vertex telescope used in: Vertex.
Hamburg, Marcel Trimpl, Bonn University A DEPFET pixel-based Vertexdetector for TESLA 55. PRC -MeetingHamburg, Mai 2003 M. Trimpl University.
Monolithic Pixels R&D at LBNL Devis Contarato Lawrence Berkeley National Laboratory International Linear Collider Workshop, LCWS 2007 DESY Hamburg, May.
Semi-conductor Detectors HEP and Accelerators Geoffrey Taylor ARC Centre for Particle Physics at the Terascale (CoEPP) The University of Melbourne.
2. Super KEKB Meeting, DEPFET Electronics DEPFET Readout and Control Electronics Ivan Peric, Peter Fischer, Christian Kreidl Heidelberg University.
ECFA ILC Workshop, November 2005, ViennaLadislav Andricek, MPI für Physik, HLL DEPFET Project Status - in Summary Technology development thinning technology.
07 October 2004 Hayet KEBBATI -1- Data Flow Reduction and Signal Sparsification in MAPS Hayet KEBBATI (GSI/IReS)
ILC VXD Review, Fermilab, October 2007 Ariane Frey, MPI für Physik DEPFET Vertex Detector Simulation and Physics Performance Ariane Frey for the DEPFET.
Super-Belle Vertexing Talk at Super B Factory Workshop Jan T. Tsuboyama (KEK) Super B factory Vertex group Please visit
ILC VXD Review, Fermilab, October 23, 2007 Hans-Günther Moser, MPI für Physik DEPFET Devices Hans-Gunther Moser for the DEPFET Collaboration (
FPCCD Vertex detector 22 Dec Y. Sugimoto KEK.
Technology Overview or Challenges of Future High Energy Particle Detection Tomasz Hemperek
LCWS08, Chicago, November 2008 Ladislav Andricek, MPI fuer Physik, HLL 1 DEPFET Active Pixel Sensors - Status and Plans - Ladislav Andricek for the DEPFET.
H.-G. Moser Max-Planck-Institut fuer Physik 1 st open meeting SuperBelle KEK Summary of PXD Session 1 Status of CAPSH. Hoedlmoser (Video)
BTeV Hybrid Pixels David Christian Fermilab July 10, 2006.
The development of the readout ASIC for the pair-monitor with SOI technology ~irradiation test~ Yutaro Sato Tohoku Univ. 29 th Mar  Introduction.
- Performance Studies & Production of the LHCb Silicon Tracker Stefan Koestner (University Zurich) on behalf of the Silicon Tracker Collaboration IT -
LHCb Vertex Detector and Beetle Chip
The Belle II DEPFET Pixel Detector
On a eRHIC silicon detector: studies/ideas BNL EIC Task Force Meeting May 16 th 2013 Benedetto Di Ruzza.
Tracking in a TPC D. Karlen / U. Victoria & TRIUMF for the LCTPC collaboration.
SuperKEKB 3nd open meeting July 7-9, 2009 Hans-Günther Moser MPI für Physik Sensor and ASIC R&D Sensor Prototype Production: running, ASICs: Switcher,
TRACKING AND VERTEXING SUMMARY Suyong Choi Korea University.
The ultralight DEPFET Pixel Detector of the Belle II Experiment Florian Lütticke On behalf of the DEPFET Collaboration th.
6/19/06 Su DongSiD Advisory: VXD DOD Summary II1 VXD DOD Summary (II) Sensors & Other system Issues.
1 Updates of EMCM Testing Jakob Haidl, Christian Koffmane, Felix Müller, Martin Ritter, Manfred Valentan o Hardware DHE (v3.2) Setups o Software o Measurements.
Particle Physics School Colloquium, May C. Koffmane, MPI für Physik, HLL, TU Berlin  DEPFETs at ILC and Belle II  Module Concept  results with.
1 Updates of EMCM Testing J. Haidl, C. Koffmane, F. Müller, M. Valentan 8th Belle II VXD Workshop September University of Trieste.
1 Test Beam with Hybrid 6 Florian Lütticke for the Testbeam Crew Bonn University 7th Belle II VXD Workshop and 18th International Workshop on DEPFET Detectors.
PXD ASIC review, October 2014 ASIC Review 1 H-.G. Moser, 18 th B2GM, June 2014 Date and Location MPP, October 27, 10:00 – October 28, 16:00, Room 313 Reviewers:
Laser Measurements (as comparison to test beam data) Florian Lütticke University of Bonn 9 th VXD Belle 2 Workshop Valencia,
H.-G. Moser Max-Planck-Institut für Physik 2nd DEPFET workshop 3-6 May 2009 Open Issues Readout cycle: 10 µs or 20 µs ? Advantages of 20 µs: - smaller.
Simulation of a DEPFET Pixel Detector IMPRS Young Scientist Workshop July, 26 – 30, 2010 Christian Koffmane 1,2 1 Max-Planck-Institut für Physik, München.
H. Krüger, , DEPFET Workshop, Heidelberg1 System and DHP Development Module overview Data rates DHP function blocks Module layout Ideas & open questions.
Test beam preparations Florian Lütticke, Mikhail Lemarenko, Carlos Marinas University of Bonn (Prof. Norbert Wermes) DEPFET workshop Ringberg (June 12-15,
1 Characterization of Pilot Run Modules for the Belle II Pixel Detector Felix Müller Max-Planck-Institut für Physik IMPRS Young Scientist Workshop Ringberg.
Pixel Sensors for the Mu3e Detector Dirk Wiedner on behalf of Mu3e February Dirk Wiedner PSI 2/15.
1 The Belle II Vertex Pixel Detector IMPRS Young Scientist Workshop July , 2014 Ringberg Castle Kreuth, Germany Felix Mueller.
TILC08, Sendai, March DEPFET Active Pixel Sensors for the ILC Marcel Vos for the DEPFET Collaboration (
Clear Performance and Demonstration of a novel Clear Concept for DEPFET Active Pixel Sensors Stefan Rummel Max-Planck-Institut für Physik – Halbleiterlabor.
Radiation Hardness of DEPFET Pixel Sensors Andreas Ritter IMPRS - Young Scientist Workshop 2010, Ringberg 1.
H.-G. Moser Max-Planck-Institut fuer Physik DEPFET Meeting Heidelberg Sept DEPFET Geometry for SuperBelle Sensor Geometry Pixel Pitch Constant/variable.
1 Test of Electrical Multi-Chip Module for Belle II Pixel Detector DPG-Frühjahrstagung der Teilchenphysik, Wuppertal 2015, T43.1 Belle II Experiment DEPFET.
PXD ASIC Review, Oct Ladislav Andricek, MPG Halbleiterlabor Belle II PXD Overview (An attempt to describe the) Interfaces between ASICs and the Experiment.
ASICs1 Drain Current Digitizer Chip (DCD) Status and Future Plans.
Nonvolatile memories:
Ivan Perić University of Heidelberg Germany
Latest results of EMCM tests / measurements
 Silicon Vertex Detector Upgrade for the Belle II Experiment
Gated Mode - System Aspects
Gated Mode - System Aspects
CMOS pixel sensors & PLUME operation principles
Silicon Pixel Detector for the PHENIX experiment at the BNL RHIC
PXD Summary Tests PXD9 Pilot Production ASICs Components Plans:
HV-MAPS Designs and Results I
The Belle II Vertex Pixel Detector (PXD)
Flavour Physics Belle II experiment at SuperKEKB Tsukuba, Japan
Lars Reuen, 7th Conference on Position Sensitive Devices, Liverpool
Yasuhiro Sugimoto KEK 17 R&D status of FPCCD VTX Yasuhiro Sugimoto KEK 17
Semiconductor Detectors
Status of CCD Vertex Detector R&D for GLC
Why silicon detectors? Main characteristics of silicon detectors:
Presentation transcript:

1 First large DEPFET pixel modules for the Belle II Pixel Detector Felix Müller Max-Planck-Institut für Physik DPG-Frühjahrstagung der Teilchenphysik, T96.1 Hamburg 2016, March 3, 2016

2 SuperKEKB upgrade Belle II Nano beam scheme  much smaller beam size (~60 nm) & increased beam currents (x2)  L = 8 x cm -2 s -1 (40 times larger than in KEKB)  E e- = 7 (8) GeV & E e+ = 4 (3.5) GeV (  = 0.42 (KEKB)  0.28 (SuperKEKB))  E cm = GeV - Y (4S) Nano beam scheme  much smaller beam size (~60 nm) & increased beam currents (x2)  L = 8 x cm -2 s -1 (40 times larger than in KEKB)  E e- = 7 (8) GeV & E e+ = 4 (3.5) GeV (  = 0.42 (KEKB)  0.28 (SuperKEKB))  E cm = GeV - Y (4S) positron (4 GeV) electron (7 GeV) 5.0 m 7.4 m Changes involving the Vertex Detector (VXD):  Two layers of DEPFET pixel detector (PXD) (at 14 and 22 mm from IP)  Four layers of Double Sided Si-Strip Detector (SVD) with a larger radius Changes involving the Vertex Detector (VXD):  Two layers of DEPFET pixel detector (PXD) (at 14 and 22 mm from IP)  Four layers of Double Sided Si-Strip Detector (SVD) with a larger radius Felix Müller, DPG Frühjahrstagung, T96.1,

Felix Müller, DPG Frühjahrstagung, T96.1, DEPFET (DEPleted p-channel Field Effect Transistor) impinging particle Clear Turn on DEPFET source Gate → Low noise → Low power → High signal/noise-ratio → Non-destructive readout → Low noise → Low power → High signal/noise-ratio → Non-destructive readout Produced at Semiconductor Laboratory of the Max-Planck Society

Felix Müller, DPG Frühjahrstagung, T96.1, Control and readout electronics SWITCHER Fast voltage pulses up to 20 V to activate gate rows and to clear the internal gate JTAG for interconnectivity tests 64 output drivers for both gate and clear channels  address 32 matrix segments 768 rows  192 electrical rows  6 ASICs needed per module SWITCHER Fast voltage pulses up to 20 V to activate gate rows and to clear the internal gate JTAG for interconnectivity tests 64 output drivers for both gate and clear channels  address 32 matrix segments 768 rows  192 electrical rows  6 ASICs needed per module Drain Current Digitizer (DCD) Keeps the columns line potential constant 8 bit ADCs Compensates for pedestal current variation (2bit DAC) Programmable gain and BW 256 input channels (4 per module) Drain Current Digitizer (DCD) Keeps the columns line potential constant 8 bit ADCs Compensates for pedestal current variation (2bit DAC) Programmable gain and BW 256 input channels (4 per module) Data Handling Processor (DHP) Pedestal correction Common mode correction Data reduction using the zero suppression Triggered readout scheme introduces further data reduction Controls the Switcher sequence Data Handling Processor (DHP) Pedestal correction Common mode correction Data reduction using the zero suppression Triggered readout scheme introduces further data reduction Controls the Switcher sequence Kapton Flex cable Power Supply via soldered contacts and bond wires Data transmission via bond wires 4 layers, 48 cm Kapton Flex cable Power Supply via soldered contacts and bond wires Data transmission via bond wires 4 layers, 48 cm DEPFET Pixel i,j,v 768x250 pixel x 2

5 PXD9 Pilot Run Drain Current Digitizer Data Handling Processor 768 x 250 = DEPFETs Switcher Current Capacitors & Resistors SMD 01005, 0201, Felix Müller, DPG Frühjahrstagung, T96.1, Readout Time: Full Speed: ~20µs Reduced Speed: ~24.5µs

6 PXD9 – W30-OB1 – Pedestals Felix Müller, DPG Frühjahrstagung, T96.1,

7 PXD9 – W30-OB1 – Noise µ=0.60 ADUµ=0.63 ADU µ=0.59 ADUµ=0.60 ADU Felix Müller, DPG Frühjahrstagung, T96.1,

8 PXD9 – W30-OB1 – Laser scan Laser signal ~2-4mip, read out at full speed with a noise of ~1.8 ADU (laser instability and system noise) ~105 ns/row, of which ~26ns are used for clear pulse (8 ticks of 32) Felix Müller, DPG Frühjahrstagung, T96.1,

9 PXD9 – W30-1 – Clear behavior OB  Consecuitive frames are readout  Timing of the laser set to have one laser pulse within 4 frames  Threshold of zero suppression is set to 5 ADU Laser spot 91ADU Felix Müller, DPG Frühjahrstagung, T96.1,

10 PXD9 – W30-OB1 – Source Measurement Felix Müller, DPG Frühjahrstagung, T96.1,

Felix Müller, DPG Frühjahrstagung, T96.1, Summary and Outlook  To fully exploit the high luminosity (increase by factor 40), the vertex detector of Belle II is currently upgraded -> low material budget pixel detector required  Excellent spatial resolution of ~ 15  m; occupancy ~ 1%, fast readout (50 kHz frame rate), huge number of pixels (~ 8 Mpix) => fits all the requirements for Belle II  Complex DEPFET technology; fully functional; successful demonstration in lab and beam tests  Thinning of sensitive area down to 50µm / 75  m (0.2% X 0 ), minimizing multiple scattering;  Low power consumption ~ 18 W per ladder  ASICs and Sensors close to final version  Signal to Noise: ~ 40 (including noise from ASICs)  Many aspects not covered in this talk; though in development by the Collaboration  First real sensor (W30-OB1) shows a good clear performance over the entire area  W30-OB1 shows spectrum of all 24 DCD/Switcher regions with reduced speed Outlook:  Optimization of ASIC settings & Supply voltages  Test Beam at April 2016 at DESY

12 Time dependent measurements of CP violation (Belle: ~200µm) Y(4S) is the first resonance just above the BB production threshold Only BB pairs are produced, and are quasi at rest in the Y(4S) frame Felix Müller, DPG Frühjahrstagung, T96.1,

13 Vertex Detector (VXD) Tasks of the vertex detector: Reconstruction of primary, secondary, … vertices of short-lived particles decay of particles is typical in the order of 130 µm from the IP (reduced boost) Detect tracks of low momentum particles (in high B field) which cannot make it to the main tracker →Innermost detector system as close as possible to IP (higher background & event rate) →highly granular pixel sensors; provide most accurate 2D position information →should be massless and still provide a large enough S/N →Design and specifications to a larger extent driven by machine/beam characteristics →Beam background, radiation damage, occupancy … Felix Müller, DPG Frühjahrstagung, T96.1,

14 Radiation Tolerance Felix Müller, DPG Frühjahrstagung, T96.1, Gate Dielectrics: ~ 200nm  Radiation field at Belle II dominated by ~MeV electrons/positrons from QED beam background Ionizing Radiation - Total Ionizing Dose (TID) (~2Mrad/a at Belle II) Positive fixed oxide positive charge  ∆V T interface trap density  reduced mobility (g m ) higher 1/f noise Non Ionizing Energy Loss (NIEL) (10 12 n eq /cm²/year at Belle II) Leakage current increase  shot noise Trapping not considered to be critical Type inversion expected after n eq /cm²

15 Radiation Tolerance Felix Müller, DPG Frühjahrstagung, T96.1, R&D since 2008:  Reduce t ox  Optimize gate dielectric layer  Vt(10Mrad): ~15V  3 V The remaining small threshold voltage shift can easily be compensated by a shift of the operating voltages of the DEPFET!  Safe operation for about 10 years in Belle II