Counterparts to Single Neutrinos

Slides:



Advertisements
Similar presentations
Anisotropy in Cosmic Ray Arrival Directions Using IceCube and IceTop Frank McNally ISCRA.
Advertisements

High Energy Neutrinos from Astrophysical Sources Dmitry Semikoz UCLA, Los Angeles & INR, Moscow.
TANAMI Blazars as Possible Sources of the IceCube PeV Neutrinos
Moriond 04/02/09Benoit Lott New insight into Gamma-ray Blazars from the Fermi-LAT Benoît Lott CEN Bordeaux-Gradignan on behalf of the Fermi-LAT collaboration.
Ultrahigh Energy Cosmic Ray Nuclei and Neutrinos
A Search for Point Sources of High Energy Neutrinos with AMANDA-B10 Scott Young, for the AMANDA collaboration UC-Irvine PhD Thesis:
The National Science FoundationThe Kavli Foundation AAS 211th meeting - Austin, TX Implications of Recent UHECR Data for Multi-Messenger Studies of Cosmic.
Thoughts on the article MNRAS Vol Padovani and Resconi Antoine Kouchner ANTARES call, September 4 th
14 July 2009Keith Bechtol1 GeV Gamma-ray Observations of Galaxy Clusters with the Fermi LAT Keith Bechtol representing the Fermi LAT Collaboration July.
Multi-wavelength AGN spectra and modeling Paolo Giommi ASI.
Alexander Kappes UW-Madison 4 th TeVPA Workshop, Beijing (China) Sep. 24 – 28, 2008 The Hunt for the Sources of the Galactic Cosmic Rays — A multi-messenger.
EHE Search for EHE neutrinos with the IceCube detector Aya Ishihara for the IceCube collaboration Chiba University.
Potential Neutrino Signals from Galactic  -Ray Sources Alexander Kappes, Christian Stegmann University Erlangen-Nuremberg Felix Aharonian, Jim Hinton.
Markos Georganopoulos 1,2 David Rivas 1,3 1 University of Maryland, Baltimore County 2 NASA Goddard Space Flight Center 3 Johns Hopkins University SUPER-EDDINGTON.
Long-term monitor on Mrk 421 using ARGO-YBJ experiment S.Z Chen (IHEP/CAS/China, On behalf of the ARGO-YBJ collaboration  1. Introduction.
High energy emission from jets – what can we learn? Amir Levinson, Tel Aviv University Levinson 2006 (IJMPA, review)
Detail study of the medium created in Au+Au collisions with high p T probes by the PHENIX experiment at RHIC Takao Sakaguchi Brookhaven National Laboratory.
IceCube non-detection of GRB Neutrinos: Constraints on the fireball properties Xiang-Yu Wang Nanjing University, China Collaborators : H. N. He, R. Y.
Humberto Salazar (FCFM-BUAP) for the Pierre Auger Collaboration, CTEQ- Fermilab School Lima, Peru, August 2012 Ultrahigh Cosmic Rays: The highest energy.
Active Galactic Nuclei & High Energy Neutrino Astronomy 黎卓 北京大学 >TeV JUNO Workshop, IHEP, 2015/7/10.
The IceCube Neutrino Observatory is a cubic kilometer detector at the geographic South Pole. We give an overview of searches for time-variable neutrino.
REDSHIFT MEASUREMENT OF EXTREMELY BEAMED BL LAC OBJECTS. A PIECE OF EVIDENCE FOR TEV ASTRONOMY AND FUNDAMENTAL PHYSICS. Marco Landoni – Oss. Astronomico.
MA4: HIGH-ENERGY ASTROPHYSICS Critical situation of manpower : 1 person! Only «free research» based in OAT. Big collaborations based elsewhere (Fermi,
What do we learn from the recent cosmic-ray positron measurements? arXiv: [MNRAS 405, 1458] arXiv: K. Blum*, B. Katz*, E. Waxman Weizmann.
Introduction to the High Energy Astrophysics Introductory lecture.
IceCube & ANTARES Constraints to the IceCube signal from ANTARES & Combined Point Source Analysis IceCube/ANTARES J. Brunner CPPM 20/01/2015.
Takayasu Anada ( anada at astro.isas.jaxa.jp), Ken Ebisawa, Tadayasu Dotani, Aya Bamba (ISAS/JAXA)anada at astro.isas.jaxa.jp Gerd Puhlhofer, Stefan.
Potential Neutrino Signals from Galactic  -Ray Sources Alexander Kappes, Christian Stegmann University Erlangen-Nuremberg Felix Aharonian, Jim Hinton.
Results from the ANTARES Neutrino Telescope VLVNT - Roma 14/7/2015 ANTARES Results - M. Spurio 1 Maurizio Spurio VLVnT– Roma 14/09/2015.
Constraining the Location of Gamma-ray Emission in Blazar Jets Manasvita Joshi, Boston University Collaborators: Alan Marscher & Svetlana Jorstad (Boston.
Recent Results from the HiRes Experiment Chad Finley UW Madison for the HiRes Collaboration TeV Particle Astrophysics II Madison WI 2006 August 28.
Time-Dependent Searches for Neutrino Point Sources with IceCube Mike Baker University of Wisconsin-Madison Erice, Sicily June 14, 2010.
Prospects of Identifying the Sources of the Galactic Cosmic Rays with IceCube Alexander Kappes Francis Halzen Aongus O’Murchadha University Wisconsin-Madison.
EHE Search for EHE neutrinos with the IceCube detector Aya Ishihara Chiba University.
Evidence for a dark matter particle Yukio Tomozawa University of Michigan March 2016.
The IceCube Neutrino Observatory is a cubic kilometer detector currently under construction at the geographic South Pole. We will give an overview of searches.
Cosmogenic Muon Background
Imaging the Neutrino Universe with AMANDA and IceCube
Relativistic Kinematics for the Binding Energy of Nuclear Reactions
On behalf of the ARGO-YBJ collaboration
The Dichotomy of Seyfert Galaxies at Hardest X-rays
High Energy Neutrinos and Gamma Rays from the Galactic Center
Swift Monitoring of Fermi Blazars and Other Sources
Gamma Rays from the Radio Galaxy M87
IceCube: Multiwavelength Approach to
Direct Measurement of the Atmospheric Muon Spectrum with IceCube
Mathew A. Malkan (UCLA) and Sean T. Scully (JMU)
Recent Results of Point Source Searches with the IceCube Neutrino Telescope Lake Louise Winter Institute 2009 Erik Strahler University of Wisconsin-Madison.
H.E.S.S. Blazar Observations:
Gamma Ray Constraints on New Physics Interpretations of IceCube Data
Theoretical status of high energy cosmic rays and neutrinos
BGL 17: 10th Bolyai-Gauss-Lobachevsky Conference , Gyöngyös
Lecture 4 The TeV Sky Cherenkov light Sources of Cherenkov radiation.
Lecture 5 Multi-wavelength cosmic background
Cosmogenic Neutrinos challenge the Proton Dip Model
UHECR source searches and magnetic fields
John Kelley for the IceCube Collaboration
GLAST Workshop April 13, 2007 Argonne National Lab
Brennan Hughey for the IceCube Collaboration
Cherenkov  April 2005 Palaiseau, France Contents: 
science with 40 IceCube strings
Alexander Kappes Francis Halzen Aongus O’Murchadha
SN 1006 Extract spectra for each region..
Cosmic rays, γ and ν in star-forming galaxies
Brennan Hughey for the IceCube Collaboration
Predictions of Ultra - High Energy Neutrino fluxes
Potential Gamma-ray Emissions from Low-Mass X-ray Binary Jets
Time-Dependent Searches for Neutrino Point Sources with IceCube
AstroPlasmas group June 14, 2010 Mike Baker.
Time-Dependent Searches for Neutrino Point Sources with IceCube
Presentation transcript:

Counterparts to Single Neutrinos Matthias Kadler Perspectives on the Extragalactic Frontier, Trieste, May 6, 2016

High-Fluence Blazars as Possible Counterparts to PeV Neutrinos Matthias Kadler F. Krauß, K. Mannheim, R. Ojha Perspectives on the Extragalactic Frontier, Trieste, May 6, 2016

IceCube Collaboration 2013; Aartsen et al. 2014

How to locate astrophysical candidate sources? Reduce the field size Use the most significant events Have a physical model

IceCube Collaboration 2013; Aartsen et al. 2014

IceCube Collaboration 2013; Aartsen et al. 2014

Ansatz: p-g in blazar jets Energy threshold: ~PeV Rel. protons (jet) Neutrino Spectrum (G~10, q varies) 100TeV 10 PeV ~1 PeV For details, see Krauß et al. 2014 Neutrino Spectrum (G~10) 100TeV 10 PeV ~1 PeV For details, see Krauß et al. 2014 UV seed photons: e~30eV

Ansatz: p-g in blazar jets Mannheim & Biermann 1998 Mücke et al. 2000 ≤ Integration  need high-fluence FSRQs!

E~1.0PeV E~1.1PeV

Krauß et al. 2014, A&A 566, L7

Krauß et al. 2014, A&A 566, L7 1.71 1.94 1.25 0.25 0.39 0.19 ?

No individual source bright enough The six TANAMI blazars are capable of explaining the observed IceCube PeV flux via p-g! But: No individual source bright enough Scaling factor?

E~2PeV IceCube Collaboration 2013; Aartsen et al. 2014

Kadler et al. 2016, Nat. Phys , DOI: 10.1038 ?

? 13 Kadler et al. 2016, Nat. Phys , DOI: 10.1038

Empirical Scaling Factor Kadler et al. 2016, Nat. Phys , DOI: 10.1038

Theoretical Scaling Factor 100TeV 10 PeV ~1 PeV Nmax Maximum 100TeV 10 PeV ~1 PeV 0.5 Nmax Flavor Corrected 100TeV 10 PeV ~1 PeV 0.25 Nmax FSRQ Fraction 100TeV 10 PeV ~1 PeV 0.0125 Nmax Predicted Kadler et al. 2016, Nat. Phys , DOI: 10.1038

Most individual blazars have very low neutrino expectation values! Look at the very brightest blazars during major outbursts

PKS B1424-418 Kadler et al. 2016, Nat. Phys , DOI: 10.1038

PKS B1424-418 Kadler et al. 2016, Nat. Phys , DOI: 10.1038

PKS B1424-418 Kadler et al. 2016, Nat. Phys , DOI: 10.1038

Kadler et al. 2016, Nat. Phys , DOI: 10.1038

Kadler et al. 2016, Nat. Phys , DOI: 10.1038

? ? 1.2 4.5 Kadler et al. 2016, Nat. Phys , DOI: 10.1038

Poisson probability: ~11% Kadler et al. 2016, Nat. Phys , DOI: 10.1038

Self-consistent model: Based on measured keV-GeV blazar fluences Explains all-sky PeV neutrino flux Predicts peaked PeV spectra no problem with TeV overprediction Association of BigBird with a single blazar Small chance probability

Chance Coincidence? ~5% Most dramatic blazar outburst of the (far) southern sky Highest-energy neutrino (seen in the southern sky) Kadler et al. 2016, Nat. Phys , DOI: 10.1038

Fundamental Implications (with the 5% kept in mind) Hadronic blazar emission models High-energy cosmic rays Neutrino velocity Lorentz invariance Equivalence principle Kadler et al. 2016, Nat. Phys , DOI: 10.1038

Kadler et al. 2016, Nat. Phys , DOI: 10.1038

(with the 5% kept in mind) Implications (with the 5% kept in mind) Hadronic blazar emission models High-energy cosmic rays Neutrino velocity Lorentz invariance Equivalence principle Kadler et al. 2016, Nat. Phys , DOI: 10.1038; Wang et al. 2016, arXiv:1602.06805; Wei et al. 2016, arXiv:1603.07568